

JSS MAHAVIDYAPEETHA JSS SCIENCE AND TECHNOLOGICAL UNIVERSITY SRI JAYACHAMARAJENDRA COLLEGE OF ENGINEERING, MYSURU

SCHEME III TO VIII SEMESTER: 2017-2018 & SYLLABUS III & IV SEMESTER: 2017-2018

DEPARTMENT OF POLYMER SCIENCE AND TECHNOLOGY

Scheme of Teaching and Examination for B.E (PST)

Semester	Credits
Ι	25.0
II	25.0
III	27.0
IV	27.0
V	27.0
VI	27.0
VII	21.0
VIII	21.0
TOTAL	200.0

Credit details

JSS SCIENCE & TECHNOLOGY UNIVERSITY, MYSURU

SRI JAYACHAMARAJENDRA COLLEGE OF ENGINEERING MYSURU

Scheme of Teaching and Examination for B.E (PS&T)

III SEMESTER

S1	Subject		Teaching	Cr	edit	S		Contact	Mark	CS .		Exam
No.	code	Course title	department	L	Т	Р	Total	per week	CIE	CIE SEE		duration in hours
1	MA310	Engineering Mathematics–III (Numerical Methods)	MAT	4	0	0	4	4	50	50	100	3
2	PT310	Inorganic and Physical Chemistry	PST	4	0	0	4	4	50	50	100	3
3	PT320	Organic Chemistry	PST	4	0	0	4	4	50	50	100	3
4	PT330	Polymer Chemistry	PST	4	0	0	4	4	50	50	100	3
5	PT340	Thermodynamics	PST	3	1	0	4	5	50	50	100	3
6	PT350	Transport Phenomena in Materials Engineering-I	PST	4	0	0	4	4	50	50	100	3
7	PT36L	Organic Chemistry Lab	PST	0	0	1.5	1.5	3	50	00	50	-
8	PT37L	Fluid Mechanics Lab	PST	0	0	1.5	1.5	3	50	00	50	-
9	HU310	Constitution of India	Humanity	-	-	-	0	2	50	0	50	-
Total							27.0	33	-		750	-

JSS SCIENCE & TECHNOLOGY UNIVERSITY, MYSURU

SRI JAYACHAMARAJENDRA COLLEGE OF ENGINEERING MYSURU

Scheme of Teaching and Examination for B.E (PS&T)

IV SEMESTER

				Cr	edit	S		Contact	Mark	Marks		Evom
Sl. No.	Subject code	Course title	Teaching department	L	Т	Р	Total	hours per week	CIE	SEE	Total	duration in hours
1	MA410	Engineering Mathematics– IV (Fourier Series, Integral Transforms and Applications)	MAT	4	0	0	4	4	50	50	100	3
2	PT410	Material Science and Engineering	PST	4	0	0	4	4	50	50	100	3
3	PT420	Polymer Physics	PST	4	0	0	4	4	50	50	100	3
4	PT430	Polymer Manufacturing Technology	PST	4	0	0	4	4	50	50	100	3
5	PT440	Polymerization Kinetics	PST	4	0	0	4	4	50	50	100	3
6	PT450	Transport Phenomena in Materials Engineering-II	PST	4	0	0	4	4	50	50	100	3
7	PT46L	Physical Chemistry Lab	PST	0	0	1.5	1.5	3	50	00	50	-
8	PT47L	Chemical Engineering Lab	PST	0	0	1.5	1.5	3	50	00	50	-
9	HU410	Environmental Studies	ENV	-	-	-	0	2	50	0	50	-
Tota	1						27.0	33	-		750	-

JSS SCIENCE & TECHNOLOGY UNIVERSITY, MYSURU

SRI JAYACHAMARAJENDRA COLLEGE OF ENGINEERING MYSURU

Scheme of Teaching and Examination for B.E (PS&T)

V SEMESTER

			Credits Contact Marks				Evom					
Sl. No.	Subject code	Course title	Teaching department	L	Т	Р	Total	hours per week	CIE	SEE	Total	duration in hours
1	PT510	Rubber Technology	PST	4	0	0	4	4	50	50	100	3
2	PT520	Rheology of Polymers	PST	4	0	0	4	4	50	50	100	3
3	PT530	Polymer- Structure Property Relationship	PST	4	0	0	4	4	50	50	100	3
4	PT540	Processing Technology-I	PST	4	0	0	4	4	50	50	100	3
5	PT550	Compounding Technology	PST	4	0	0	4	4	50	50	100	3
6	PT560	Polymer Analysis and Evaluation	PST	4	0	0	4	4	50	50	100	3
7	PT57L	Polymer Analysis and Characterization Lab	PST	0	0	1.5	1.5	3	50	00	50	-
8	PT58L	Processing Technology Lab - I	PST	0	0	1.5	1.5	3	50	00	50	-
Tota	1						27	30	-		/00	-

JSS SCIENCE & TECHNOLOGY UNIVERSITY, MYSURU

SRI JAYACHAMARAJENDRA COLLEGE OF ENGINEERING MYSURU

Scheme of Teaching and Examination for B.E (PS&T)

VI SEMESTER

				Cr	edit	S		Contact Marks				Evam
Sl. No.	Subject code	Course title	Teaching department	L	Т	Р	Total	hours per week	CIE	SEE	Total	duration in hours
1	PT610	Testing of Polymers	PST	4	0	0	4	4	50	50	100	3
2	PT620	Polymer Blends and Alloys	PST	4	0	0	4	4	50	50	100	3
3	PT630	Polymer Composites	PST	4	0	0	4	4	50	50	100	3
4	PT640	Processing Technology-II	PST	4	0	0	4	4	50	50	100	3
5	PT650	Product Design	PST	4	0	0	4	4	50	50	100	3
6	PT66X	Elective-1 (One from Group-1)	PST	4	0	0	4	4	50	50	100	3
7	PT67L	Processing Technology Lab - II	PST	0	0	1.5	1.5	3	50	00	50	-
8	PT68L	Polymer Testing Lab	PST	0	0	1.5	1.5	3	50	00	50	-
Total							27.0	30	-		700	-

Courses	Courses offered in Elective Group-1 (One subject of this to be taken)								
Sl. No.	Subject code	Course title							
1	PT661	Nanotechnology							
2	PT662	Engineering Plastics							
3	PT663	Fiber Technology							
4	PT664	Modeling and Simulation							

JSS SCIENCE & TECHNOLOGY UNIVERSITY, MYSURU

SRI JAYACHAMARAJENDRA COLLEGE OF ENGINEERING MYSURU

Scheme of Teaching and Examination for B.E (PS&T)

VII SEMESTER

					edit	s		Contact Marks				Exam
Sl. No.	Subject code	Course title	Teaching department	L	Т	Р	Total	hours per week	CIE	SEE	Total	duration in hours
1	PT710	Rubber Products Manufacturing	PST	4	0	0	4	4	50	50	100	3
2	PT720	Process engineering Management-I	PST	4	0	0	4	4	50	50	100	3
3	PT730	Design of Moulds and Dies	PST	3	1	0	4	5	50	50	100	3
4	PT74X	Elective-2 (One from Group-2)	PST	4	0	0	4	4	50	50	100	3
5	PT75L	CAD Lab	PST	0	0	1.5	1.5	3	50	00	50	-
6	PT76P	Research Methodology	PST	2	0	0	2	2	50	-	50	-
7	PT77P	In plant Training		0	0	1.5	1.5	-	50	-	50	-
8		Foreign Language		-	-	-	0	2	50	0	50	-
Tota	1						21	24	-		600	-

Courses offered in Elective Group-2								
(One subject of this to be taken)								
Sl. No.	Subject code	Course title						
1	PT741 Polymer Recycling							
2	PT742	Adhesives Technology						
3	PT743	Packaging Technology						
4	PT744	Total Quality Management						

JSS SCIENCE & TECHNOLOGY UNIVERSITY, MYSURU

SRI JAYACHAMARAJENDRA COLLEGE OF ENGINEERING MYSURU

Scheme of Teaching and Examination for B.E (PS&T)

VIII SEMESTER

				Cr	edit	S		Contact	Mark	ζS.		Evom
Sl. No.	Subject code	Course title	Teaching department	L	Т	Р	Total	hours per week	CIE	SEE	Total	duration in hours
		Process										
1	PT810	engineering	PST	4	0	0	4	4	50	50	100	3
		Management-II										
		Elective-3										
2	PT82X	(One from	PST	4	0	0	4	4	50	50	100	3
		Group-3)										
		Elective-4										
3	PT83X	(One from	PST	4	0	0	4	4	50	50	100	3
		Group-4)										
4	PT84P	Project Work	PST	0	0	9	9	20	70	30	100	3
Total							21	32	-		400	12

Cour	rses offere	d in Elective Group-3	Courses offered in Elective Group-4					
(One subject of this to be taken)			(One subject of this to be taken)					
Sl.	Subject	Course title	Sl.	Subject	Course title			
No.	code	Course the	No.	code	Course title			
1	PT821	Paints Technology	1	PT831	Tire Technology			
2	DT822	Smart Materials	2	DT832	Thermoplastic			
2	1 1022	Smart Wraterrais		11052	Elastomers			
3	PT823	Membrane Technology	3	PT833	Operations Research			
4	PT824	Statistical Quality Control	4	PT834	Biomaterials			

III Semester

MA31	DB: ENGINEERING MATHEMATICS-III (NUMERICAL METHODS) (4-0-0)							
Course calculu	e Objective: Computational techniques will be introduced in different topics like algos, linear algebra.	ebra,						
Course	e Outcomes: Students will be able to							
CO1:	Understand how machine computation is done and the error analysis arising out of this;							
CO2:	Interpolate the given data using appropriate techniques;							
CO3:	Obtain values of various functions arising out of engineering problems using appropriate techniques;							
CO4:	Handle matrix computations that come up in linear algebra like accurate / approxi solutions of systems of linear equations, eigen values, eigenvectors, inverses, etc.;	mate						
CO5:	Make differential and integral calculus related computations to determine phy quantities like area, volume, velocity, acceleration, etc., and numerically s differential equations;	vsical solve						
Course	e Content:							
1	Number representation on the computer: floating point arithmetic; machine precision and errors – truncation errors and round-off errors; random number	6h						
	generation.							
2	Curve fitting: Newton / Lagrange interpolation techniques, difference formulas, Bezier curves.	6h						
3	Root finding: bisection method, method of false-position, Newton-Raphson's method, roots of polynomials.	6h						
4	Linear system of equations: Eigen values and eigenvectors; Cayley-Hamilton theorem; LU-factorization, Gauss-Jordan elimination, Gaussian elimination; iterative methods, Jacobi's method, Gauss-Seidel method; Eigen values by power method; finding inverses of matrices; application to search engines.	10h						
5	Numerical differentiation and integration: computing first and second derivatives, Richardson extrapolation; Newton-Cotes integration formulas, Trapezoidal rules, Simpson's rules; Gauss quadrature; Romberg integration; numerical methods of solving differential equations.	12h						
1 ext B	OOKS:							

- 1. Schilling, R. J.; Harris, S. L. Applied numerical methods for engineers, Pacific Grove, CA, 2000.
- 2. Kreyszig, E. Advanced engineering mathematics; 3d ed.; Wiley: New York, 1972.

PT310	INORGANIC AND PHYSICAL CHEMISTRY (4-0-0)									
Course	• Outcomes: Upon successful completion of this course, the students will be able to-									
CO1:	Discuss the fundamentals of inorganic chemistry and inorganic polymers									
CO2:	Explain the basic concepts of coordination compounds									
CO3:	Determine the colligative properties and their applications									
CO4:	Explain catalysis and chemical equilibrium									
CO5:	Apply polymer colloidal solution and adsorption behavior knowledge to select sui material for various end-use applications	table								
Course	e Content:									
Unit 1	 Introduction: basics of inorganic chemistry, overview of periodic table, classification and types of inorganic compounds, uses of inorganic molecules in polymer engineering. Inorganic Polymers: Definition of inorganic polymers, comparison of organic polymers with inorganic polymers, A critical account (in brief) of preparation, properties, structure and applications of phosphonitrillic, silicon based, carbide, borohydride, borazine, iso- and hetero- poly acid classes of inorganic polymers. 	10h								
Unit 2	Coordination compounds: Definitions and terminologies- double salts, coordination compounds, coordination complexes, chelates, coordination numbers, ligands, chelating ligands and chelates. Nomenclature of coordination compounds. Physical methods in the study of complexes. Theories of Coordination complexes (Crystal field theory, Valence bond theory and molecular orbital theory Postulates and drawbacks of these theories). Stability of complex ions, stability constants, factors affecting the stability of a complex ion, stereo-regularity of coordination compounds with different coordination numbers, Isomerism, isomerism in coordination compounds, structural	10h								

	isomerism, coordination isomerism, coordination position isomerism, stereo	
	isomerism, geometrical isomerism and optical isomerism.	
Unit 3	Colligative Properties: Definition and types; concept of mole and mole fraction,	10h
	Lowering of vapor pressure, Raoult's law– statement, limitation, determination of	
	molecular weight, Ostwald's and Walker's method.	
	Osmosis and osmotic pressure- explanation of the terms, effect of temperature and	
	concentration and simultaneous effect; derivation of molecular weight, Berkeley	
	and Hartely's method, isotonic solutions– explanation, molecular weight	
	determination.	
	Elevation in boiling point of a solvent- derivation, experimental determination of	
	molecular weight by ebullioscopic method; Depression in freezing point,	
	experimental determination of molecular weight by cryoscopic method, numerical	
	problems.	
Unit 4	Catalysis: Types with examples of catalytic reactions, homogeneous and	10h
	heterogeneous, theory and mechanism of catalytic reactions, characteristics of	
	catalytic reactions, negative catalysts, enzyme catalysts, acid-base catalysts.	
	Zeigler Natta (coordination) catalysts, inorganic catalysts (like Zeolites, Silicates)	
	and their applications.	
	Chemical Equilibrium: Spontaneous reactions, standard free energy change,	
	Characteristics of chemical equilibrium, effects of temperature on equilibrium	
	constant. Application of law of mass action. Equilibrium of ideal solutions.	
	Thermodynamic treatment of the law of mass action, The Van't Hoff reaction isotherm relation between $V_{\rm e}$ $V_{\rm e}$ and $V_{\rm e}$ numerical problems	
	isometrin, relation between \mathbf{K}_p , \mathbf{K}_c and \mathbf{K}_x ; numerical problems.	
Unit 5	The Colloidal State– Colloidal systems, classification of colloids, lyophobic and	10h
	lyophillic sols, preparation of lyophobic colloidal solutions, purification of	
	conoidal solutions, properties of colloidal systems, electrical and electro-kinetic	
	properties, determination of size of conordar particles.	
	Adsorption: Definition, types of adsorption: chemisorption & physisorption;	
	influence of temperature and pressure, nature of adsorbent and adsorbed gas,	
	Freundlich's adsorption isotherm, unimolecular layers, Longmuir's adsorption	
	isomerins (derivation of equation), and numerical problems	

Text books:

- 1. B.R.Puri, L.R.Sharma and K.C. Kalia, Principles of Inorganic Chemistry, Milestone Publishers & Distributors, New Delhi, 2008.
- 2. B.R.Puri, L.R.Sharma, and Pathania, Principles of Physical Chemistry, 46th Ed., Vishal Publication & Co., New Delhi, 2013. Author. Title, edition, Publisher, Place, Year.

References:

- 1. Okhil K. Medhi, Ellen A. K., James E. Huheey, Richard L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity, 4th Edition, Pearson, India, 2006.
- 2. Gary L. Miessler, Donald A. Tarr, Inorganic Chemistry, 3rd Edition, Pearson, India, 2008.
- 3. Shriver, Ed. by Peter Atkins, Inorganic Chemistry, 8th edition, Oxford Pub, UK, 2009.
- 4. Gurdeep Raj, Goel, Advanced Inorganic Chemistry, Vol. I, II; Publishing House, Meerut, India, 2011.
- 5. Philip Mattews, Advanced Chemistry, 1st Edition, Cambridge University Press, New Delhi, 2008.
- 6. Samuel Glasstone, Text book of Physical Chemistry, 2nd Ed., Macmillan India Press, Madras, 1984.

---000----

PT320: ORGANIC CHEMISTRY (4-0-0)

Course Outcomes: Upon successful completion of this course, the students will be able to-

CO1:	Explain fundamentals of organic chemistry and it's applications;	
CO2:	Explain organic reaction mechanism and stereo chemistry;	
CO3:	Explain the nomenclature, reactions, properties & applications of acyclic, carbocycli aromatic hydrocarbons;	ic and
CO4:	Explain the nomenclature, reactions, properties & applications of hydroxyl/ haloger amino/ carboxylic hydrocarbons; and fundamentals of selected organic families;	nated/
CO5:	Illustrate the synthesis reactions of monomers.	
Course	Content:	
Unit 1	Introduction and Structure: Definition of organic compounds; Classification based on structure and chemical family. IUPAC Nomenclature of organic compounds (general). Bonding in organic molecules: ethane, ethylene, acetylene and butadiene. Electron displacement effect (inductive, mesomeric, inductomeric,	10h
	electromeric, hyper-conjugation and resonance effects); Polarity of bonds.	

	Application of Organic Chemistry: Organic Biomolecules: General structure	
	property and examples of: saccharides, amino acids, peptides, proteins, nucleic	
	acids, steroids, fatty acids. Organic Polymers- Basic terminologies: organic	
	polymers, functionality, polymerization, copolymer, polymer blend, polymer	
	composite, polymer compound. Comparison between simple molecules, monomers	
	and macro-molecules. Scope of organic chemistry in polymer technology.	
	Overview of polymer applications. Organo Metallic Compounds- Grignard	
	reagents.	
Unit 2	Stereochemistry- Chirality of organic molecules with or without chiral centers	10h
	and determination of their absolute configurations; stereo isomerism (optical and	
	geometrical). Bayers strain theory, Sasche and Mohrs theory, Homotopic,	
	enantiotopic and diastereotopic atoms, groups and faces. Conformational analysis	
	of acyclic and cyclic compounds.	
	Reactivity and Mechanism: Reactions- types and characteristics; homolysis and	
	heterolysis (concept of ions and radicals); addition, substitution, elimination and	
	rearrangement (general conditions and mechanism; electronic and steric effects);	
	introduction to other types of reactions. Types of reagents- electrophiles and	
	neucleophiles; Acids and bases: types and strengths. Elementary treatment of SN1,	
	SN2, E1 and E2 reactions, Hoffmann and Saytzeff rules, Markownikoff rule and	
	Kharash effect. Aromatic electrophilic substitutions. Nucleophilic and electrophilic	
	substitution and addition reactions (both aromatic and aliphatic). Reactive	
	intermediates – carbocations, carbanions, carbenes, nitrenes, arynes and free	
	radicals. Oxidation and reduction reactions.	
Unit 3	Study of organic families: definition, types, chemical structure, nomenclature,	10h
	synthesis approach, reactivity, properties & applications of each of the following	
	class of organic molecules is to be discussed along with some characteristic	
	reactions as mentioned-	
	i) Acyclic hydrocarbons: Alkanes- relative reactivity of higher alkanes with	
	halogens. Alkenes- electrophyllic addition reactions with halogens,	
	Markownikoff's rule, alkylation and polymerization. Addition of halogens to	
	dienes, Diels Alder's reactions. Alkynes- Acidity and polymerization of alkynes.	
	ii) Carbocyclic hydrocarbons: Alicyclic compounds: cyclo-alkanes, cyclo-	

	alkenes, and cyclo-alkynes. Brief introduction to polycyclic hydrocarbons (e.g.	
	cyclopentene, DCPD, norbornene, etc).	
	iii) Aromatic compounds (arenes): aromaticity, resonance energy and substitution reaction.	
	iv) Introduction to Heterocyclic organic compounds: Brief study including	
	saturated, unsaturated and aromatic types (e.g. oxirane, furan, thiophene, pyrrole,	
	pyridine, thiazine, etc.)	
Unit 4	v) Halogenated hydrocarbons.	10h
	vi) Hydroxy compounds: Alcohols; & Phenols- effect of substitution on acidity of phenols.	
	vii) Carboxylic acids: Types (Dicarboxylic, Aromatic, Hydroxy, Amino acids,	
	etc); Derivatives of acids; acidity and structure of carboxylic ions. Effect of	
	substitution on acidity; effect of heat on hydroxy acids.	
	viii) Amines.	
	ix) Brief introduction to: Aldehydes, Amides, Anilides, Anhydrides,	
	Carbohydrates, Ethers, Esters, Ketones, Nitrile compounds, Nitro compounds and	
	Urethanes.	
Unit 5	Synthesis of monomers: Butadiene, isoprene, tetrafluoroethylene, adipic acid,	10h
	maleic acid, phthalic acid, lactic acid, aniline, phthalic anhydride, maleic	
	anhydride, caprolactone.	
Text b	bok: Bahl B S, Text Book of Organic Chemistry, 9th ed, S Chand & Co, Delhi, 1967.	1
Refere	nces:	
1.	Morrison, R. T.; Boyd, R. N. Organic chemistry; 3d ed.; Allyn and Bacon: Boston, 19	73.
2.	Weissermel, K.; Arpe, H. Industrial organic chemistry: important raw material intermediates; 1. Aufl.; Verlag Chemie: Weinheim, 1978.	s and
3.	Jain, M. K. Principles of organic chemistry; 8th rev.; Nagiu: Jullundar, 1976.	
4.	Sykes, P. A guidebook to mechanism in organic chemistry; 6th ed.; Longman: H Essex, England, 1986.	arlow,
5.	Lloyd N. Ferguson, The Modern Structural Theory Of Organic Chemistry, Prentice 1962.	e Hall.
6.	Waddams, A. L. Chemicals from petroleum: an introductory survey; 3d ed.; Wiley York, 1973 J. March, Advanced Organic Chemistry, 4th edition, McGraw Hill, New 1994	: New York,

- 7. R. O. C. Norman and J. M. Coxon, Principles of Organic Synthesis, Blackie Academic and Professional, Glasgow, NewYork, 1993.
- 8. P. H. Gorggins, Unit Processes in Organic Synthesis, 5th edition, McGraw-Hill, 1958.
- 9. J. March, Advanced Organic Chemistry, 3rd edition, McGraw Hill, New York, 1985.
- 10. I L. Finar, Organic Chemistry, Volume 1: The Fundamental Principles, VI edition, ELBS, 1989.
- 11. M. K. Jain and S. C. Sharma, Organic Chemistry, Shoban Lal Chand. & Co., 2000.

---000----

PT330: POLYMER CHEMISTRY (4-0-0)

Course Outcomes: Upon successful completion of this course, the students will be able to-

CO1:	Explain fundamentals of polymer chemistry and classification of polymers
CO2:	Explain mechanism for polymerization reactions
CO3:	Explain polymerization methods with importance
CO4:	Explain the fundamentals of copolymerization and special topics in polymer synthesis
CO5:	Outline the important polymer reactions and purification of polymers.

Course Content:

Unit 1Introduction and Nomenclature: Functionality of monomers and its role in
deciding polymers' structure (linear, branched and cross-linked); Review of basics
of polymer technology. IUPAC names, trade or commercial names, source based
and structure based names of various polymers. Abbreviations and grades of
polymers. General remarks on form or physical nature of polymeric materials-
plastics, rubbers, fibers/textiles, latex/emulsions, resins.10h

Classifications of polymers: [brief description of each classification; names and chemical structures of polymers to be discussed in each type of classifications covering around seventy well known polymers]: On the basis of source (natural, synthetic & semi-synthetic); backbone composition (organic & inorganic polymer; homo & co-polymer; homo-chain & hetero-chain polymer); polymerization (addition & condensation); effect of heat (thermo-plastic polymers & thermo-setting polymers); geometric isomerism (cis & trans polymers) and stereo isomerism (tacticity- iso, syndio & atactic polymers); application (commodity, engineering & high-performance); molecular structure (linear, branched & cross-

	linked); microstructure (amorphous, crystalline & semi-crystalline).	
	Polymerization: Difference between addition/chain & condensation/ step	
	examples of - initiator inhibitor retarder chain transfer agent catalyst short-stop	
	and medium; Factors affecting polymerization.	
Unit 2	Chemistry of Polymerization	10h
	Chain (addition/vinyl) polymerization: Definition & types. Addition	
	polymerization (reaction and/or mechanism) - free radical, anionic and cationic-	
	Initiation, propagation, and termination by different approaches under each	
	technique has to be discussed along with examples of polymers produced and highlights of each technique.	
	Step (condensation) polymerization: Definition & types. Condensation	
	polymerization reaction and/or mechanism (polyesters (PET & PBT), polyamides	
	(nylon 6 and nylon 66), polyethers, phenol-formaldehyde. Poly-addition reaction	
	(polyurethane, polyurea).	
	Stereo regular (Co-ordination) polymerization: Types and structures of	
	initiators (Zeigler-Natta catalyst and other types), Polymerization mechanism,	
	advantages & disadvantages, types and examples of stereo specific polymers with	
	applications	
Unit 3	Copolymerization: definition of co-monomers & co-polymers; classification	10h
	based on process and repeat units; need of copolymerization with specific	
	copolymerization and its mechanism	
	Special tenies in polymon synthesis. Delyaddition polymerization metethesis	
	polymerization interfacial condensation electrochemical polymerization group-	
	transfer polymerization. [brief and general mechanism or method, important	
	transfer polymerization, [brief and general mechanism or method, important polymers produced, advantages/ specialty and disadvantages/ limitations of each	
	transfer polymerization, [brief and general mechanism or method, important polymers produced, advantages/ specialty and disadvantages/ limitations of each technique to be highlighted].	
Unit 4	 transfer polymerization, [brief and general mechanism or method, important polymers produced, advantages/ specialty and disadvantages/ limitations of each technique to be highlighted]. Methods of Polymerization: Bulk, solution, suspension, emulsion, solid phase, 	10h
Unit 4	 transfer polymerization, [brief and general mechanism or method, important polymers produced, advantages/ specialty and disadvantages/ limitations of each technique to be highlighted]. Methods of Polymerization: Bulk, solution, suspension, emulsion, solid phase, gas phase, ring opening, melt condensation, solution condensation and plasma 	10h

	polymer produced, advantages and limitations of each technique to be discussed).	
Unit 5	Polymer reactions: introduction; types- hydrolysis, acidolysis, addition,	10h
	substitution, halogenation, hydrogenation, crosslinking, curing, (brief mechanism	
	and usefulness of each reaction to be highlighted with examples).	
	Isolation and purification of polymers: Need of isolation and purification;	
	polymer fractionation, fractional precipitation and partial dissolution (extraction)	
	technique.	

Text books:

- 1. Padma L Nayak, Polymer Science, Kalyani Publishers, New Delhi, 1st Edn, 2005.
- 2. Gowariker, V. R.; Viswanathan, N. V., Polymer Science; Wiley: New York, 1986.

References:

- 1. Rodriguez, F. Principles of polymer systems; McGraw-Hill: New York, 1970.
- 2. Seymour, R. B.; Carraher, Polymer chemistry: an introduction; 4th ed.; M. Dekker: New York, 1996.
- 3. Odian, G. G. Principles of polymerization; Fourth ed, Wiley, 2004.
- 4. Young, R. J and P.A.Lovell, Introduction to polymers; Chapman and Hall: London, 1981.
- 5. Anil Kumar, Fundamentals Of Polymer Science and Engineering, Tata McGraw Hill, New Delhi, 1978
- 6. G.S. Misra, Polymer Chemistry, Wiley Eastern Ltd., New Delhi, 1993
- 7. Billmeyer Fred W. JR. Textbook of polymer science, John Wiley & Sons, New York, 1984

PT340: THERMODYNAMICS (3-1-0)		
Course	Course Outcomes: Upon successful completion of this course, the students will be able to-	
CO1:	Explain first law of thermodynamics and its applications	
CO2:	Derive and apply second law of thermodynamics	
CO3:	Estimate the thermodynamic properties of fluids using the concept of Gibbs free energy, Helmholtz free energy and Maxwell equations.	
CO4:	Apply the concepts of chemical potential and partial properties in binary solutions.	
CO5:	Apply thermodynamic principles in polymer solutions and elastomers.	
Course Content:		

Unit 1	Introduction & I Law of Thermodynamics: basic concepts and definitions,	10h
	Thermodynamic terms, joule's experiment, internal energy (U), first law of	
	thermodynamics, statement, mathematical expression, Constant volume and	
	constant pressure process, Enthalpy (H), heat capacities at constant volume and	
	constant pressure, the ideal gas, the internal energy of an ideal gas, isothermal	
	process, adiabatic processes, isochoric process, isobaric process, numerical	
	problems.	
Unit 2	II Law of Thermodynamics: II law of Thermodynamics; statements, Heat	10h
	engines, Carnot's theorem, Thermodynamic temperature scales, Carnot cycle for a	
	gas and Elastomers, entropy, entropy changes of an ideal gas; numerical problems.	
Unit 3	Thermodynamic properties of fluids: Property relations for homogeneous phases	10h
	- Maxwell's relations, enthalpy (H) and entropy (S) as functions of Temperature	
	(T) and Pressure (P), internal energy (U) as a function of (P), The ideal gas state.	
	Alternative forms for liquids, Internal energy (U) and entropy (S) as functions of	
	Temperature (T) and volume (V), residual properties, numerical problems.	
Unit 4	Solution thermodynamics: Fundamental property relations, the chemical potential	10h
	and phase equilibria, partial properties, Equations relating molar and partial molar	
	properties, Gibbs-Duhem equation, partial properties in binary solutions, relations	
	among partial properties, fugacity and fugacity coefficient, ideal solution, excess	
	properties, activity coefficient, numerical problems.	
Unit 5	Thermodynamics of polymer solutions and elastomers:	10h
	Thermodynamics of polymer solution: Thermodynamics of ideal solutions, Flory	
	Huggin's theory, partial molar quantities and chemical potential, dilute polymer	
	solutions, the solubility parameter approach, Deformation of elastomers:	
	Thermodynamics of elastomer deformation, thermoelastic inversion effect.	
Text bo	oks:	
1. J.M.Smith and H.C.Van Ness. Introduction to Chemical Engineering thermodynamics; Mc.Graw Hill, New Delhi.1987.		nics;
2. F	R.J.Young & P.A. Lovell, Introduction to Polymers; Chapman & Hall; London, 1992.	
Referen	ces:	
1. I 1	L.H.Sperling, Introduction to Physical polymer science; John Wiley and Sons; Lor 985	ıdon,

- 2. A.Tager, Physical chemistry of Polymers; Mir publishers; Moscow, 1978.
- 3. Joel. R.Fried, Polymer Science & Technology; Prentice Hall India Private Limited; New Delhi, 1995.
- 4. Narayanan K.V. Textbook of Chemical Engg. Thermodynamics, Prentice Hall India Private Limited, New Delhi, 2001.

---000----

PT350: TRANSPORT PHENOMENA IN MATERIALS ENGINEERING-I (4-0-0)

Course Outcomes: Upon successful completion of this course, the students will be able to

CO1:	Explain the fundamentals of fluid mechanics and concepts of dimensional analysis.	
CO2:	Explain concepts of laminar and turbulent flow.	
CO3:	Apply the concepts of mass, momentum and mechanical energy balance.	
CO4:	Explain principles of various fluid flow measuring devices and basic concepts of cher process calculation.	nical
CO5:	Perform material balance with chemical reaction and can apply the knowledge problem solving.	e for
Course	Course Content:	
Unit 1	 Engineering Units and Pressure in Static Fluids: Basic Engineering Units, Concept of Pressure, Pascal's law, Measurement of Pressure, numerical problems. Dimensional Analysis: Step by step procedure for dimensional analysis, Buckingham's' Π theorem, example problems on dimensional analysis. Dimension less groups and their importance. 	10h
Unit 2	 Momentum Transport and Laminar Flow of Newtonian Fluids: Introduction, Newton's Law of Viscosity, Conservation of Momentum in Steady-State Flow, Fluid Flow in a horizontal and Vertical Cylindrical pipes, Fluid Flow in an Annulus, Fluid Flow Between Two Flat Parallel Plates, Capillary Flow meter, numerical problems. Turbulent Flow: Introduction, Friction Factor and Turbulent Flow in Cylindrical Pipes, Flow Through Packed Beds and Fluidized Beds, numerical problems. Flow past submerged bodies, Prandtl boundary layer theory. 	10h

Unit 3	Mechanical Energy Balance and Its Application to Fluid Flow: Introduction	10h
	Bernoulli's Equation Frictional Loss Influence of Bends Fittings and Changes in	
	the Pipe Radius Concept of Head Bernoulli's Equation for Flow of	
	Compressible Eluids Numericals	
	Compressione Fluids. Trumericais.	
Unit 4	Flow measuring devices: Pitot Tube, Orifice meter, Venturi meter, numericals.	10h
	Chemical process calculations, material balance without reaction: General	
	material balance equation for steady and unsteady state. Process calculations,	
	Typical steady state material balances in distillation, absorption, extraction,	
	crystallization, mixing and evaporation, numerical problems.	
Unit 5	Steady state material balance with reaction: Principles of Stoichiometry,	10h
	Concept of limiting, Excess reactants and inerts, Fractional and percentage	
	conversion, Fractional and percentage yield, Selectivity, numerical problems.	
Text bo	oks:	
1. Davi Edit	id R Gaskell. An Introduction to Transport Phenomena in Materials Engineering, ion, Momentum press, LLC, New Jersey, 2012.	2nd
2. R K Delh	2. R K Bansal. A Textbook of Fluid Mechanics. 3 rd edition, Laxmi publications (P) Ltd, New Delhi, 2005.	
Referen	ces:	
1. Hou Ener	 Hougen O.A., Watson K.M. and Ragatz R.A. Chemical Process Principles, Part–I Material and Energy Balances, 2nd edition, CBS publishers and distributors, New Delhi, 1995. 	
2. Him Pren	2. Himmelblau, D.M. Basic Principles and calculations in Chemical Engineering, 6 th Edn, Prentice Hall of India, New Delhi, 1997.	
3. Poir Publ	ier D. R., and Geiger G. H. Transport Phenomena in Materials Processing, V ications, 1998.	Viley
4. McC Publ	Cabe W.L. and Smith. Unit Operations of chemical Engineering, 6 th edn., McGraw ications, New York , 2001.	Hill
	-000-	
PT36L: (PT36L: ORGANIC CHEMISTRY (0-0-1.5)	
Course Outcomes: Upon successful completion of this course, the students will be able to-		

Course Outcomes: Upon successful completion of this course, the students will be able to-	
CO1:	Explain the fundamentals, procedure and significance of organic chemistry experiments;
CO2:	Conduct experiments by adopting laboratory disciplines;

CO3:	Identify organic compounds by qualitative	e ana	alysis;	
CO4:	Synthesize or Quantitatively Analyze some important organic compounds;			
CO5:	Analyze, interpret and report the experimental data suitably.			
List of	experiments:			
Part – A	A	Part - B		
Identifi	cation of organic compounds of the	I.	Single step preparation of organic	
followin	ng types:	col	mpounds by the following methods.	
1. Hyd	lrocarbons	1.	Nitration	
2. Alco	phols	2.	Acetylation	
3. Este	ers	3.	Bromination	
4. Alde	ehydes	4.	Oxidation	
5. Ketones		5.	Hydrolysis	
6. Carl	boxylic acids	II. Qualitative estimation of		
7. Ami	ines	1. Aniline		
8. Ami	ides	2.	Phenol	
9. Carl	bohydrates	3.	Acetone	
10. Nitro compounds		4.	Acetamide	
11. Halogen compounds		5.	Ethyl or Methyl acetate	
12. Pher	12. Phenols			
13. Ani	lides			

Text book: Vogel A I. Elementary practical organic chemistry, 2nd ed, Wiley, New York, 1966.

References:

- 1. Bahl B S. Text Book of Organic Chemistry, 9th ed, S Chand & Co, Delhi, 1967.
- 2. Organic Chemistry Lab Manual (Department of PST).

PT37L:FLUID MECHANICS LAB (0-0-1.5)

Course Outcomes: Upon successful completion of this course, the students will be able to

CO1:	Interpret the nature of flow and understand concept of flow through fluidized and packed
	bed.

- **CO2:** Practically determine hydraulic coefficients and pressure drops.
- **CO3:** Compare the efficiencies of various flow measuring devices.

CO4: Experimentally determine minor and major energy losses in pipe flow.

CO5: Construct performance characteristic curves for single and multi stage centrifugal pump.

Course Content: List of experiments

- 1. Determination of Reynolds number
- 2. Determination of Hydraulic coefficients using a vertical orifice (circular) discharging fluid freely into atmosphere
- 3. Calibration of Venturimeter
- 4. Calibration of Orifice meter
- 5. Calibration of Rectangular and V-Notch
- 6. Determination of Darcy's friction factor for pipes of uniform diameter
- 7. Minor Losses in pipes: Determination of minor losses of head in pipes due to (i) Sudden expansion (ii) Sudden contraction and (iii) Bends and Elbows
- 8. Determination of hydraulic coefficients for different types of mouth pieces.
- 9. Flow through fluidized bed
- 10. Flow through packed bed
- 11. Experiments to determine the characteristics of a Single stage centrifugal pump
- 12. Experiments to determine the characteristics of a Multi-stage centrifugal pump.

Text books:

1. R K Bansal. A Textbook of Fluid Mechanics. First edition, Laxmi publications (P) Ltd, New Delhi, 2005.

References:

- 1. McCabe, W.L., Smith J C and Harriot P. Unit Operations of chemical Engineering, 6th edn., McGraw Hill Publications, New York , 2001.
- 2. Coulson J.M. and Richardson .J.F., Chemical Engineering, Vol. 1, 6th edn., Butterworth Heinemann, Oxford, 2002.
- 3. David R Gaskell. An Introduction to Transport Phenomena in Materials Engineering, 2nd Edition, Momentum press, LLC, New Jersey, 2012.

-000-

HU310: CONSTITUITION OF INDIA AND PROFESSIONAL ETHICS (2-0-0)

Course Objectives:

- The objective of studying the Constitution of India is to increase the legal and social awareness of the engineers so that they are equipped to face challenges they may confront in their careers and also to encourage them to actively participate in the political process of the country.
- The objective of studying professional ethics is to equip an engineer to face such situations and to solve such conflicts in compliance with the accepted ethical principles and norms.

Course Outcomes: After the completion of the course the student will-

CO1: Have knowledge about and an understanding of constitutionally guaranteed rights and duties of every citizen. Have knowledge about the various forums that actively participate in protecting these rights in case of violation.

CO2: Have an understanding of the working of the electoral process, amendment procedure. Have an understanding of the different organs of the State, namely legislature, executive and the judiciary.

CO3: Have an understanding of the powers & functions of state legislature and Union legislature. Have an understanding of the powers & functions of state executive, and Union executive and emergency provisions.

CO4: Have an understanding of the special provisions related to SCs, STs, Women, children and backward classes. Have an understanding of the scope, limitation and functioning of the Indian judiciary. Have an understanding of the importance of fundamental duties and directive principles of state policy.

CO5: Be able to develop the ethical autonomy i.e., the skill and the habit of thinking rationally and critically about the ethical values viz honesty, integrity and reliability. Be able to build and contribute to a safe and healthy work environment. Be able to better serve in responsible positions of leadership and discharge his duties better.

CO6: Be equipped with better decision making abilities and will be able to make morally and ethically sound decisions. Be able to make positive contribution to the society. Be examples of faith, character, and high professional ethics.

Course Content:

- 1. Preamble to the constitution of India. Fundamental Rights under Part III details of Exercise of rights, Limitations and Important cases.
- 2. Relevance of Directive Principles of State Policy under Part IV. Fundamental duties and their significance.
- 3. Union Executive President, Prime Minister, Parliament and the Supreme Court of India.
- 4. State executive Governors, Chief Minister, State Legislator and High Courts.
- 5. Constitutional Provisions for Scheduled Castes and Tribes, Women & Children & Backward classes, Emergency Provisions.
- 6. Electoral process, Amendment procedure, 42nd, 44th, 74th, 76th, 86th and 91st Constitutional amendments.
- 7. Scope & aims of engineering Ethics, Responsibility of engineers. Impediments to responsibility.
- 8. Honesty, Integrity and reliability, risks, safety & liability on engineering.

IV Semester

MA310A/MA410A: ENGINEERING MATHEMATICS-IV

(Fourier Series, Integral Transforms And Applications) (4-0-0)

Course Objective:

- Fourier series and Integral transforms techniques will be introduced.
- Applications of Integral transforms to solution of differential equations will be discussed. Elementary Complex analysis is introduced.

Course Outcomes: Students will be able to-

CO1:	Find expansions of functions as Fourier series / half-range Fourier series in a given r of values of the variable. Obtain the various harmonics of the Fourier series expanded for the given numerical data.	ange ision
CO2:	To find Fourier transforms, Fourier sine and Fourier cosine transforms of functions.	
CO3:	Use Laplace transforms to determine solutions to linear differential equations.	
CO4:	Solve difference equations using Z-transforms.	
CO5:	Analyze functions of complex variable and handle analytic functions.	
CO6:	Apply Cauchy-Riemann equations and harmonic functions to problems of Mechanics, Thermo Dynamics and Electromagnetic fields.	Fluid
CO7:	Geometrically interpret conformal and bilinear transformations.	
Course	e Content:	
1	Fourier series: Introduction, Fourier series for even and odd functions; half-range expansions; practical harmonic analysis.	6h
2	Fourier transforms: Fourier transforms, inverse transforms, applications to ordinary and partial differential equations; discrete Fourier transforms.	6h
3	Laplace transforms and inverse Laplace transforms: applications to differential equations.	12h
4	Linear Algebra: Real vector spaces; linear dependence/independence; basis / dimension; linear transformations; rank – nullity theorem.	10h
5	Z-transforms: z-transforms and inverse z-transforms; solution of difference equations.	6h

6 **Complex Analysis:** Introduction, analytic functions; C-R equations; properties of **8h** analytic functions; construction of conformal mappings.

Text Book: Kreyszig, E. Advanced engineering mathematics; 3d ed.; Wiley: New York, 1972.

---000----

PT410: MATERIAL SCIENCE AND ENGINEERING (4-0-0)

Course Outcomes: Upon successful completion of this course, the students will be able to

- **CO1:** Analyze material atomic structure and bonding.
- **CO2:** Modify material properties for an engineering application and construct the phase diagrams for given material systems.
- **CO3:** Explain composite, ceramic properties and applications.
- **CO4:** Explain electrical and mechanical properties of materials.
- **CO5:** Explain properties and applications of advanced materials.

Course Content:

Unit 1	Structure: Atomic structure and bonding in materials. Crystal structure of	10h
	materials, crystal systems, unit cells and space lattices, determination of structures	
	of simple crystals by x-ray diffraction, miller indices of planes and directions,	
	packing geometry in metallic, ionic and covalent solids. Concept of amorphous,	
	single and polycrystalline structures and their effect on properties of materials.	
	Crystal growth techniques. Imperfections in crystalline solids and their role in	
	influencing various properties, numerical problems.	
Unit 2	Metals and Alloys: Solid solutions, solubility limit, the phase rule, the lever rule,	10h
	single component systems, binary phase diagrams, intermediate phases, iron-iron	
	carbide phase diagram, heat treatment of steels, cold and hot working of metals,	
	recovery, re-crystallization and grain growth, micro-structural changes during	
	cooling. Microstructure, properties and applications of ferrous and non-ferrous	
	alloys. Applications of phase diagrams, numerical problems.	
Unit 3	Composites: Properties and applications of various composites.	10h
	Ceramics: Structure, properties, processing and applications of traditional and	
	advanced ceramics. Sintering process.	

	Mechanical Properties: stress-strain diagrams of metallic, ceramic and polymeric materials, modulus of elasticity, yield strength, tensile strength, toughness, elongation, plastic deformation, visco-elasticity, hardness, impact strength, creep, fatigue, ductile and brittle fracture, numerical problems.	
Unit 4	Magnetic Properties: Origin of magnetism in metallic and ceramic materials, para-magnetism, diamagnetism, ferromagnetism, anti-ferromagnetism, ferrimagnetism, magnetic hysteresis. Numerical problems. Electrical Properties: Concept of energy band diagram for materials – conductors, semiconductors and insulators, electrical conductivity – effect of temperature on conductivity, intrinsic and extrinsic semiconductors, dielectric properties, Hall effect, Numerical problems.	10h
Unit 5	Advanced Materials: Smart materials, materials exhibiting ferroelectric, piezoelectric, opto-electric, semiconducting behavior, lasers and optical fibers, photoconductivity and superconductivity, nano-materials – synthesis, properties and applications, biomaterials, superalloys, shape memory alloys. Degradation of materials by corrosion and oxidation.	10h

Text books:

- V Raghavan. Materials Science & Engineering, 5th Edition, PHI Learning Pvt. Ltd., New Delhi, 2011.
- R. Balasubramaniam. Callister's Materials Science and Engineering, 2nd Edition, Wiley India Pvt. Ltd. New Delhi, 2014.

References:

- 1. William D Callister. Materials Science and Engineering, John Wiley, New York, 2007.
- 2. A.K. Bhargava. Engineering Materials, Prentice-Hall of India Pvt. Ltd., 2005.
- L.H. Van Vlack. Elements of Material Science & Engineering, 6th edition, Addison-Wesley Publishing Co., New York, 1989.

PT420	PT420: POLYMER PHYSICS (4-0-0)		
Course	e Outcomes: Upon successful completion of this course, the students will be able to-		
CO1:	Explain basic concepts of micro structure of polymers.		
CO2:	Explain the fundamental concepts of crystallization of polymers.		
CO3:	Explain the polymer thermal transition behavior.		
CO4:	Determine molecular weight of polymers using different experimental techniques equations.	and	
CO5:	Apply the concepts of polymer solution in designing products such as coll dispersions, hydrogels and solvent based adhesives	oidal	
Course	e Content:		
Unit 1	Chain Configurations: Conformation of polymers-constitutional isomerism, positional isomerism, branching; Configurational isomerism- geometrical isomerism, stereo isomerism; polymer conformation-conformation of small molecules and conformation of polymers; Conformation of macromolecules-General shape of macromolecules – general shape of macromolecules; definition of conformational parameters of a chain-end to end distance.	10h	
Unit 2	The Crystalline State: Crystallizability, polymer crystallization (mechanism), factors affecting Crystallizability of polymer, Spherulites, methods used to determine crystallinity, effect of crystallinity on properties, melting behavior, factors affecting on T _m , Kinetics of Crystallization. Applications of Avrami equation, orientation crystallization and annealing. Crystal structure of polymers: Molecular aggregation, molecular arrangement in crystallites, polyethylene, syndiotactic Vinyl polymers, PTFE, PVA, polyesters, Polyamides, Polydienes; the principles of crystallite structure, Single crystals of polymers.	10h	
Unit 3	Methods of measuring molecular weight averages: The concept of molecular weights (number average molecular weight, weight average molecular weight, viscosity average and z-average molecular weight – definition and mathematical expressions), molecular weight distribution and its importance and polydispersity. Methods of measuring molecular weight: Ebuilioscopy, Cryoscopy, membrane	10h	

г

	osmometry, vapor pressure osmometry, end group analysis, light scattering,	
	viscometry, and ultracentrifugation methods. (Principle, theory, experimental	
	procedure, merits, demerits of each techniques and problems should be discussed).	
Unit 4	Transition of polymers- from glassy to rubber like and viscofluid states: Five	10h
	regions of viscoelastic behavior; glassy region, glass transition region, rubbery	
	flow region, rubbery plateau region, the liquid flow region, Relaxation nature of	
	glass transition, mechanism of glass transition, methods of determining glass	
	transition temperature - Dilatometry, thermal methods, mechanical methods, other	
	transitions and relaxations; main chain and side chain motions, T_{LL} (liquid-liquid	
	transition), Factors affecting T _{g.}	
Unit 5	True solutions of polymers: Specific properties of true solution, dissolution and	10h
	swelling of polymers, degree and kinetics of swelling, polyelectrolytic solutions,	
	factors affecting dissolution and swelling of polymers, gels of polymers, colloidal	
	dispersions of polymers, preparation of polymer solutions and their refining,	
	resistance of polymeric materials to solvents.	
Text b	ook: Sperling, L. H. Introduction to physical polymer science; Wiley: New York, 1986	•
Refere	nces:	
1.	David I. Bower, An Introduction to Polymer Physics, Cambridge University Press,	New
	York, 2002.	
2.	A.Tagar, Physical Chemistry of polymers, Sec. Edn, MIR Publishers, Prentice Hal	l Inc
	1978.	
3.	V.N.Kuleznev & V.A. Shershnev, The chemistry and physics of polymer, Sec. Edn $-$	MIR
	Publisher, Moscow, 1988	
4.	S. F. SUN St, Physical chemistry of macromolecules Basic Principles and Issues,	Sec.
	Edn, Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 2004.	
5.	Yves Gnanou, Michel Fontanille, Organic and physical chemistry of polymers, W	'iley-
	Interscience Publication, John Wiley & Sons Inc New York, 2008.	
6.	Padma L Nayak, Polymer Science, Kalyani Publishers, New Delhi, 1st Edn, 2005.	
7.	Jerold Schutz, Polymer Material science, First Edn. Prentice Hall Inc, 1974.	
8.	Fried, J. R., Polymer science and technology, Prentice Hall PTR: Englewood Cliffs,	N.J.,

1995.

PT430: POLYMER MANUFACTURING TECHNOLOGY (4-0-0)		
Course Outcomes: Upon successful completion of this course, the students will be able to explain-		
CO1:	Chemistry, manufacturing process, compounding ,properties and applications of polyolefin's	
CO2:	Chemistry, manufacturing process, compounding, properties and applications of styr and acrylics.	ene's
CO3:	Chemistry, manufacturing process, compounding, properties and applications of PVC engineering thermoplastics.	2 and
CO4:	Chemistry, manufacturing process, compounding, properties and applications formalde based thermosets.	hyde
CO5:	Chemistry, manufacturing process, compounding, properties and applications of epoxy and urethane.	resin
Course	e Content:	
Unit 1	 Polyethylene: HDPE, LDPE, LLDPE, VLDPE, UHMWPE, chlorinated PE (CPE), chloro sulphonated PE, copolymers of PE (EVA). Polypropylene: Isotactic, Syndio tactic and Atactic PP. 	10h
Unit 2	 Polystyrene: Polystyrene, HIPS & copolymers of styrene (SAN & ABS). Acrylics: PMA, PMMA, PAN Polyvinyl chloride 	10h
Unit 3	Polyamides: Nylon 6 and Nylon 66 Poly esters: Thermoplastic (PET & PBT) Poly carbonate	10h
Unit 4	Phenol formaldehyde. Urea formaldehyde. Melamine formaldehyde.	10h
Unit 5	Epoxy resins. Polyurethanes. Unsaturated Polyester resins.	10h
Text book: Brydson, J. A. Plastics materials; Butterworth-Heinemann; 7 edition, Iliffe; London, 1966.		
References: 1. W. Mayo Smith, Manufacture of Plastics - Vol. I & II; Van Nostrand Reinhold; New York, 1964		

2. Irvin.I. Rubin, Hand Book of Plastics Materials & Technology; John Wiley & Sons Inc.; New York, 1990.

PT440: POLYMERIZATION KINETICS (4-0-0)		
Course	• Outcomes: Upon successful completion of this course, the students will be able to-	
CO1:	Discuss the basic concepts of chemical kinetics	
CO2:	Explain kinetics of addition polymerization.	
CO3:	Derive kinetic expression for condensation polymerization.	
CO4:	Apply the kinetic aspects to derive kinetic expression for ionic & coordin polymerization	ation
CO5:	Derive kinetic equations for copolymerization and evaluate monomer reactivity ratio.	
Course	e Content:	
Unit 1	General Chemical Kinetics: Definition of reaction rate, order, molecularity, different theories of reaction rate - collision theory, transition state theory, Arrhenius law, activation energy, kinetic expressions for simple first order & second order chemical reaction. Different methods to determine order of reaction. Numerical problems.	10h
Unit 2	Kinetics of addition polymerization: Expressions for rate of initiator decomposition, chain initiation, chain termination, rate of propagation, steady state assumption, overall rate of polymerization, experimental approaches for determination of polymerization rate, Initiator efficiency, kinetic chain length, chain transfer, control of molecular weight by transfer, determination of individual rate constants by sector method. Numerical problems.	10h
Unit 3	Kinetics of condensations polymerization: Rate expression for acid catalyzed and non catalyzed reaction, statistics of linear step reaction polymerization, molecular weight control, principle of equal reactivity of functional groups. Multi chain polymer, poly functional step reaction polymerization, prediction of gel point, molecular weight distribution in 3-dimensional step reaction polymers. Numerical problems.	10h

Unit 4	Kinetics of ionic and co-ordination polymerization: Kinetics of cationic	10h
	polymerization, anionic polymerization, living polymers, kinetic expression for co-	
	ordination polymerization. Smith-Ewart's kinetics. Numerical problems.	
Unit 5	Kinetics of co-polymerization: The co-polymeric equation, monomer reactivity	10h
	ratios, ideal & alternating co-polymerization, instantaneous composition of	
	feed and polymer, evaluation of monomer reactivity ratios, rate of co-	
	polymerization, integration of co-polymer equation. Numerical problems.	

Text books:

- 1. Keith J Laidler. Chemical Kinetics; Tata Mc.Graw Hill; New Delhi, 1975.
- 2. Fred W.Billmeyer. Text book of Polymer Science; JR John Wiley & Sons, New York.1984.

References:

- 1. Premamoy Ghosh. Polymer Science and Technology of Plastics & Rubbers; Tata McGraw-Hill, N.Delhi,India, 1990.
- 2. Anil Kumar & S.K.Gupta. Fundaments of Polymer Science and Engineering; Tata Mc Graw Hill, New Delhi, 1978

PT450:TRANSPORT PHENOMENA IN MATERIALS ENGINEERING-II (4-0-0)		
Cours	e Outcomes: Upon successful completion of this course, the students will be able to-	
CO1:	Explain the principles and governing equations of heat transfer by conduction	
CO2:	Explain the individual and overall heat transfer coefficients of convective heat transfer.	
CO3:	Apply the knowledge of heat transfer in designing different types of heat exchange	nge
CO4:	Explain the principles of diffusion and develop relevant mathematical relations.	
CO5:	Develop mathematical relations for mass transfer applications which involve bin mixtures in process engineering.	ıary
Course Content:		
Unit 1	Transport of Heat by Conduction : Introduction, Fourier's Law and Newton's	10h
	Law, Conduction, Conduction in Heat Sources, Conduction through a multi	

	layered wall, General Heat Conduction Equation, Numerical Problems.		
Unit 2	Transport of Heat by Convection: Introduction, relation between individual and	10h	
	overall heat transfer coefficient. Heat Transfer During Fluid Flow in Cylindrical		
	Pipes, Energy Balance in Heat Transfer by Convection Between a Cylindrical Pipe		
	and a Flowing Fluid, Heat Transfer by Forced Convection from horizontal		
	Cylinders, General Energy Equation, and Numerical Problems.		
Unit 3	Heat exchangers: Introduction, heat transfer to a jacket, double pipe heat	10h	
	exchanger, and Finned tube heat exchanger. Numerical Problems.		
Unit 4	Mass Transport by Diffusion in the Solid State: Introduction, Atomic Diffusion	10h	
	as a Random-Walk Process, Fick's First Law of Diffusion, One-Dimensional Non-		
	Steady-State Diffusion in a Solid; Fick's Second Law of Diffusion, numerical		
	problems.		
Unit 5	Mass Transport in Fluids: Introduction, Mass and Molar Fluxes in a Fluid,	10h	
	Equations of Diffusion with Convection in a Binary Mixture A-B, One-		
	Dimensional Transport in a Binary Mixture of Ideal Gases, Equimolar Counter		
	diffusion, One-Dimensional Steady-State Diffusion of Gas A Through Stationary		
	Gas B, Numerical problems.		
Text bo	ok: David R Gaskell, An Introduction to Transport Phenomena in Materials Enginee	ering,	
2nd Edit	tion, Momentum press, LLC, New Jersey (2012).		
References:			
1. D. R. Poirier, G. H. Geiger, Transport Phenomena in Materials Processing, Wiley, (1998).			
2. I	McCabe, W.L., Smith J C and Harriot P., Unit Operations of chemical Engineering	g, 6t ^h	
e	ed., Mc Graw Hill, NY 2001.		
000			

PT46L: Physical Chemistry Lab (0-0-1.5)

Course Outcomes: Upon successful completion of this course, the students will be able to-

CO1:	Explain the fundamentals, procedures and significance of physical chemistry experiments;
CO2:	Work in team and Conduct experiments by adopting laboratory disciplines;
CO3:	Determine intensive and extensive physical properties of liquids and solids;

CO4:	Analyze, interpret and report the experimental data suitably.	
Course Content:		
1.	Determination of density and surface tension of pure liquids.	
2.	Determination of viscosity of a binary liquid mixture using viscometer.	
3.	Determination of molecular weight of a non volatile substance by cryoscopic method using water as a solvent.	
4.	Determination of molecular weight of a non-volatile substance by cryoscopic method using benzene as a solvent.	
5.	Determination of molecular weight of a compound using Landsberg's apparatus by ebulioscopic method.	
6.	Determination of degree of dissociation of a electrolyte (KCI) by cryoscopic method.	
7.	Determination of degree of hydrolysis of potassium acetate near 0 °C.	
8.	Determination of heat of neutralization of a monobasic acid.	
9. 3	Determination of partition coefficient.	
10.	First order kinetics - Acid hydrolysis of methyl acetate.	
11.	Second order kinetics - Potassium per sulfate and potassium iodide.	
12.1	Langmuir's adsorption isotherm - adsorption of acetic acid on activated charcoal.	
13.	Determination of molar heat of solution of a sparingly soluble organic acid by solubility method.	
14.1	Determination of degree of association of benzoic acid.	
15.	Chemical equilibrium in solutions - validity of law of mass action.	
16.	Determination of partial molar volume of NaCl solution.	
Text book: David P. Shoemaker and Carl W.Garland, Experiments in physical chemistry, Mc-Graw Hill, 2 nd Edition, NewYork, 1967. References:		
1.	Physical Chemistry Lab Manual (Department of PST).	
2.	J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publishing House, 16 th Edition, Meerut, 2006.	

PT47L: Chemical Engineering Lab (0-0-1.5)

Course Outcomes: Upon successful completion of this course, the students will be able to

CO1:	Acquire the knowledge of unit conversion and concept of dimensional homogeneity.
CO2:	Learn usage of steam tables, nomographs and other property tables.
CO3:	Familiarize with conducting experiments on different types of heat exchangers and distillation methods.
CO4 :	Experimentally generate VLE data and its validation with literature.

Course Content: List of experiments

- 1. Double pipe heat exchanger
- 2. Heat transfer in packed beds
- 3. Heat transfer through bare and finned tubes
- 4. Heat transfer in jacketed vessel
- 5. Calibration of thermocouples
- 6. Simple distillation
- 7. Packed bed distillation
- 8. Steam distillation
- 9. Vapour- liquid equillibrium
- 10. Tray drier
- 11. Condensers
- 12. Study of Single effect evaporator

Text books:

1. McCabe, W.L. and Smith J C. Unit Operations of chemical Engineering, 6th Edn., Mc Graw Hill, New York , 2001.

References:

- 1. Treybal, R. E. Mass-transfer operations; 3d ed.; McGraw-Hill: New York, 1980.
- 2. Don Green, Robert Perry, Perry's Chemical Engineers Hand Book, 8th ed.; Mcgraw-

-000-

HU410: ENVIRONMENTAL STUDIES (2-0-0)

Course Outcome: At the end of the course, students will have gained complete fundamental concepts of Environmental pollution sources, their impacts, control measures and preventive actions. The course also reinforces the concepts of role of individuals, NGOs and Governmental organizations, legal frame work, Acts, Regulations and Rules pertaining to Environmental Protection and Conservation.

Learning Objectives:

- Understand the basic concepts of earth's spheres, ecosystem and food chain
- Know the different types of pollution sources and their impacts on the environmental compartments such as water, air, land and ecosystems
- Appreciate and understand the importance of various cycles of elements
- Assess the energy requirements, different forms of energy. Conventional and alternative energy sources
- Get a feel of current environmental issues of concern such as urbanization, population, climate change, ozone layer depletion etc.,
- Know the role of individuals and other related agencies including governmental organizations involved in Environmental Protection and Pollution Control

Course Content:

- 1. Environment, spheres of earth (lithosphere, hydrosphere, atmosphere, biosphere); Ecosystem-Balanced ecosystem, Biome, food chain and food web.
- Effects of human activities on environment-Agriculture, Housing, Industry, Mining and Transportation activities, Environmental Impact Assessment (EIA), Sustainable Development.
- Natural resources Water resources-Availability and quality aspects. Water borne diseases, water induced diseases, Fluoride problems in drinking water. Mineral Resources; Forest Resources.

- 4. Biogeochemical Cycles Carbon, Nitrogen, Phosphorus and Sulphur Cycles.
- 5. Energy- Different types of energy, Electro-magnetic radiation. Conventional energy sources.
- 6. Non-conventional sources-hydro electric fossil fuel based nuclear, solar, biomass and biogas.
- 7. Hydrogen as an alternative future source of energy, Environmental pollution and their effects.
- 8. Water pollution, land pollution, noise pollution, public health aspects.
- Current Environmental issues of importance: population growth; climate change; global warming- effects, urbanisation, automobile pollution; acid rain, ozone layer depletion, animal husbandry.
- 10. Environmental protection- role of government, legal aspects, initiatives by nongovernmental organization, environmental education, women education.