JSS MAHAVIDYAPEETHA JSS Science and Technology University (Sri Jayachamarajendra College of Engineering) JSS Technical Institutions Campus, Mysuru-06

Scheme of Teaching and Examination for

M.Tech. in MATERIAL SCIENCE AND ENGINEERING

(Applicable for students admitting in 2017-18) (I to IV semester Approved in BOS Meeting 2017)

CREDIT DETAILS

SEMESTER I	28
SEMESTER II	28
SEMESTER III	18
SEMESTER IV	26

Total 100

JSS Mahavidyapeeta JSS Science and Technology Universiity Mysuru – 570 006

SCHEME OF TEACHING

I Semester M. Tech., Material Science and Engineering

											Exam
Subject	Name of the	Teaching		(Credit	S	Contact	Marks		5	duration
code	subject	Department					hours				in hrs
			L	Т	Р	Total		CIE	SEE	Total	
	Material	PST	4	1	0	5	5	50	50	100	03
MSE110	Science and										
	Engineering										
	Advanced	PST	4	0	1	5	5	50	50	100	03
MSE120	Characteriza										
WISE120	tion										
	Techniques										
M0E120	Materials	PST	4	1	0	5	5	50	50	100	03
	Structure -										
MSE130	Property										
	Relations										
MSE14X	Elective 1	PST	5	0	0	5	5	50	50	100	03
MSE15X	Elective 2	PST	5	0	0	5	5	50	50	100	03
	Material	PST	-	-	1.5	1.5	3	50	-	50	-
	Synthesis										
MSE16L	and										
	Characteriza										
	tion Lab										
MSE17S	Seminar	-	-	-	1.5	1.5	-	50	-	50	-
	1	1		Tota	al	28		To	tal	600	
				Cred	its			Ma	rks		

L=Lecture, T= Tutorial, P=Practical

Elective subjects:

	Elective 1	Elective 2			
Subject	Course title		Subject	Course title	
code			code		
MSE141	Ceramic Science and Technology		MSE151	Computer Aided Design and	
				Manufacturing	
MSE142	MSE142 Computational Material Science		MSE152	Technology of Paints and Surface	
	Computational Material Science			Coating	
MSE143	Material Failure Analysis		MSE153	Research Methodology	
MSE144	Blends and Alloys		MSE154	Advanced Polymer Technology	
MSE145	Applied Mathematics		MSE155	Semiconducting, Magnetic and	
				Optoelectronic Materials	
MSE146	Additive Manufacturing				
	Technology				
MSE147	Statistical Quality Control				

JSS Mahavidyapeeta JSS Science and Technology Universiity Mysuru – 570 006

SCHEME OF TEACHING II Semester M. Tech., Material Science and Engineering

				С	redi	ts			Marks	5	Exam
Subject	Name of the	Teaching					Contact				duration
code	subject	Department					hours				in hrs
			L	Τ	Р	Total		CIE	SEE	Total	
MSE210	Advanced	PST	5	0	0	5	5	50	50	100	03
	Composite										
	Technology										
MSE220	Nano Materials	PST	5	0	0	5	5	50	50	100	03
	and Technology										
MSE230	Material	PST	5	0	0	5	5	50	50	100	03
	Processing										
	Technology										
MSE24X	Elective 3	PST	5	0	0	5	5	50	50	100	03
MSE25X	Elective 4	PST	5	0	0	5	5	50	50	100	03
MSE26L	Processing and	PST	-	-	1.	1.5	3	50	-	50	-
	Testing lab				5						
MSE27S	Seminar	_	-	-	1.	1.5	-	50	-	50	-
					5						
]	Fota	ıl	28		Total		600	
			C	redi	its			Ma	rks		

L=Lecture, T= Tutorial, P=Practical

Elective subjects:

	Elective 3	Elective 4			
Subject	Course title	Subject	Course title		
code		code			
MSE241	Smart Materials	MSE251	Non-Destructive Testing		
MSE243	Finite Element Methods and	MSE252	Renewable and Sustainable		
	Applications		Materials		
MSE242	Biomaterials	MSE253	Packaging Materials		
MSE244	Project Engineering and	MSE254	Fiber Technology		
	Management				
MSE245	Heat Transfer in Material	MSE255	Advanced Rubber Technology		
	Engineering				

JSS Mahavidyapeeta

JSS Science and Technology University

Mysuru – 570 006

SCHEME OF TEACHING

III Semester M. Tech., Material Science and Engineering

SI. No	Subject code	Course title	Teaching department	Credit			Credits		Contact Marks hours			Exam duration in hrs
				L	Т	Р	Total		CIE	SEE	Total	
1	MSE31T	Training in Industry / Exploration Research	-	0	0	4	4	_	100	_	100	_
2.	MSE32P	Project Work (Phase-I)	-	0	0	14	14	_	100	_	100	_
				Total credits		18	_	To ma	otal rks	200	_	

IV Semester M. Tech., Material Science and Engineering

SI	Subject code	Course title	Teaching department	Credits				Contact	Marks			Exam
No				L	Т	Р	Total	hours	CIE	SEE	Total	duration in hrs
1	MSE41P	Project Work (Phase- II)	-	_	_	26	26	_	200	100	300	3
				Total credits		26	_	To ma	tal rks	300	_	

JSS Mahavidyapeeta JSS Science and Technology Universiity (Formerly SJCE) Mysuru – 570 006 M. Tech. Material Science and Engineering

Scheme of Evaluation for III and IV Semesters of M.Tech., Programme

Event	Normal Period	Credits	Expected Outcome	Remarks	
	I	III Ser	nester		
Industrial Training	September 2 nd Week	04	Report on industrial training / presentation	25% weightage for external evaluation 75% weightage for internal evaluation	
CIE-I Synopsis Evaluation	October 1 st Week	04	Synopsis presentation with Objectives / Scope / Literature Survey	By department committee	
CIE-II Midterm Evaluation-I	December 1 st Week	06	Comprehensive review of the progress	By department committee	
CIE-III Verification of compliance	CIE-III Verification of compliance		Verification of Compliance of midterm evaluation-I	By department committee	
	-	IV Ser	nester	-	
CIE-IV Midterm Evaluation-II	April 2 nd Week	08	Comprehensive review of the progress	By department committee	
CIE-V Final Internal Seminar / Demonstration	June 2 nd Week	08	Discussion with final results and conclusions	By department committee	
Report Preparation and Submission	July 2 nd Week	_	_	_	
Thesis Evaluation and Viva-VoceOn or before 30th August10		_	By the panel of examiners with HOD or his nominee as Chairman		
Results	31 st August	_	_	_	

- **Note:** 1. Marks awarded for Industrial Training and total marks awarded for CIE-I, CIE-II and CIE-III put together shall be sent to the controller of examination by the 3rd week of January.
 - 2. Marks awarded for CIE-IV and CIE-V put together shall be sent to the controller of examination by the end of June.

Schedule of Events during the 2nd Year of M.Tech. Programme

•	Comn	nencement of III Semester	:	13 th July
	0	Industrial Training (8 weeks)	:	13 th July – 5 th September
	0	Evaluation of Industrial Training	:	2 nd Week of September
•	Repor	ting to Project work	:	7 th September
	0	CIE-I: Evaluation of Synopsis	:	1 st Week of October
	0	CIE-II: Mid-term Evaluation-I	:	1 st Week of December
	0	CIE-III: Verification of Compliance of		
		Mid-term Evaluation-I	:	2 nd Week of January
•	Comm	nencement of IV Semester	:	16 th January
	0	CIE-IV: Mid-term Evaluation-II	:	2 nd Week of April
	0	CIE-V: Final Internal Seminar /		
		Demonstration of the Project Work	:	2 nd Week of June
	0	Preparation of the M.Tech., Dissertation	:	3 rd Week of June-2 nd Week of July
	0	Submission of the M.Tech., Dissertation	:	2 nd Week of July
	0	Viva-Voce	:	On or before 30 th August
•	Anno	uncement of the Results	:	31 st August

Note: 1. If any day indicated is a holiday, then the event shall happen the next working day.
2. Marks awarded for Industrial Training and total marks awarded for CIE-I, CIE-II and CIE-III put together shall be sent to the controller of examination by the 3rd week of January.

3. Marks awarded for CIE-IV and CIE-V put together shall be sent to the controller of examination by the end of June.

I Semester

MSE11	0: MATERIAL SCIENCE AND ENGINEERING (4-1-0)	
Course	Outcomes: Upon successful completion of this course, the students will be able to	
CO1: A	analyze material atomic structure and bonding.	
CO2: C	Construct the phase diagrams for a given material systems.	
CO3: E	xplain mechanical behavior and the degradation mechanism of materials by corrosion a	nd
0	xidation	
CO4: E	xplain magnetic and electrical properties of materials.	
CO5: E	xplain properties and applications of advanced materials.	
Course	Content	
Unit 1	Introduction to material science and engineering: Importance of material science	10h
	and engineering, Material evolution through ages, Criteria for selection of materials:	
	properties, cost, manufacturing process, availability legal and safety factors.	
	Atomic structure: Structure and bonding in materials. Crystal structure of	
	materials, crystal systems, Concept of amorphous, single and polycrystalline	
	structures and their effect on properties of materials. Imperfections in crystalline	
	solids and their role in influencing properties, Crystal growth techniques,	
	determination of structures of simple crystals by x-ray diffraction, packing geometry	
	in metallic, ionic and covalent solids, numerical problems.	
Unit 2	Solid solutions and alloys: Types of Solid solutions, solubility limit, Gibbs phase	10h
	rule, lever rule, binary phase diagrams, isomorphous and Eutectic phase diagrams,	
	iron-iron carbide phase diagram, applications of phase diagrams, heat treatment of	
	steels, cold and hot working of metals, micro-structural changes during	
	solidification of alloys, theories of solid solution strengthening. Microstructure,	
	properties and applications of important ferrous and non-ferrous alloys. Numerical	
	problems.	
Unit 3	Mechanical behavior of materials: Stress-strain diagrams of metallic, ceramic and	10h
	polymeric materials, introduction to long term and short term mechanical properties,	
	factors influencing properties, determination of modulus of elasticity, elongation,	

r		
	yield strength, tensile strength, impact strength, toughness, plastic deformation,	
	visco-elasticity, hardness, creep, stress relaxation, fatigue, ductile and brittle	
	fracture, numerical problems.	
	Degradation of materials by corrosion and oxidation	
	Corrosion: electrochemical principles, Electrode potential, Nernst equation. oxy-	
	reduction potentials; general characteristics of electrochemical corrosion, overview	
	of corrosion prevention methods.	
Unit 4	Magnetic Properties - Origin of magnetism in materials, concept of para-	10h
	magnetism, diamagnetism, ferromagnetism, anti-ferromagnetism, ferrimagnetism,	
	hard and soft magnets, applications of magnets, magnetic hysteresis. Numerical	
	problems.	
	Electrical Properties - Concept of energy band diagram for conductors,	
	semiconductors and insulators, effect of temperature on conductivity, intrinsic and	
	extrinsic semiconductors, dielectric properties, Hall effect, Numerical problems.	
Unit 5	Advanced Materials - Ferroelectric, piezoelectric, opto-electric, semiconducting	10h
	materials, lasers, optical fibers, photoconducting materials, superconductors, Smart	
	materials, biomaterials, super alloys, shape memory alloys, nano-materials -	
	synthesis, properties and applications.	
Referen	ices:	
1. V I	Raghavan. Materials Science and Engineering, 5 th Edition, PHI Learning Pvt. Ltd.,	, New
Del	hi, 2011.	
2. R.	Balasubramaniam. Callister's Materials Science and Engineering, 2 nd Edition, Wiley	India
Pvt	. Ltd. New Delhi, 2014.	
3. Wi	lliam D Callister. Materials Science and Engineering, John Wiley, New York, 2007.	

- 4. A.K. Bhargava. Engineering Materials, Prentice-Hall of India Pvt. Ltd., 2005.
- L.H. Van Vlack. Elements of Material Science and Engineering, 6th edition, Addison- Wesley Publishing Co., New York, 1989.

MSE120: ADVANCED CHARACTERIZATION TECHNIQUES (4:0:1)

Contact Hours: 5/week

Course Outcomes: Upon successful completion of this course, the students will be able to

CO1: Explain the theory and techniques of various modern analytical tools;

CO2: Explain principles of various spectroscopic techniques

CO3: Distinguish the type of material and Explain its structure / properties;

CO4: Apply this knowledge to produce better engineering products;

CO5: Apply this knowledge to distinguish quality of materials available commercially.

Course C	ontent:	
Unit 1	 Introduction to analytical instrumentation - Calibration, accuracy, precision, reproducibility, standard deviation. Spectroscopic Methods 	10h
	Introduction, classification, Ultra-violet/Visible spectroscopy - Introduction, principle, Lambert law, Beer's law, theory, instrumentation, procedure, advantages, disadvantages, interpretation of spectrogram, applications-qualitative analysis, quantitative analysis; purity, cis- and trans- conformation. Numerical	
Unit 2	Fourier transform infrared (FTIR) spectroscopy	10h
	Introduction, principle, theory, instrumentation, procedure, methods of sample preparation, advantages, disadvantages, interpretation of spectrogram, and applications-establishment of chemical structure of polymers, reaction kinetics, polymer linkage, hydrogen bond formation, purity, copolymerization, qualitative and quantitative results. Chromatographic techniques Principle of Gel permeation chromatography (GPC), mechanism of separation, theory/techniques, instrumentation, molecular weight determination and distribution (MWD), purity, composition, other applications.	
Unit 3	Nuclear Magnetic spectroscopy (NMR)- (¹ H NMR and ¹³ C NMR)	10h
	Introduction Principle, theory, Spin-spin coupling, coupling constant, instrumentation, procedure, method of sample preparation, advantages, disadvantages, applications – chemical structures, purity, tacticity.	

Un	nit 4	Thermal Methods	10h
		Introduction, general classification, advantages of the TA methods; Differential	
		scanning calorimetry (DSC and MDSC)- Introduction, theory, instrumentation,	
		method of analysis, factors affecting on DSC results, advantage, disadvantage,	
		interpretation of DSC thermograms, applications - T_g , T_m , determination of	
		blends composition, purity, identification of unknown polymers, degree of	
		crystallization, degree of cure and rate of cure studies/kinetics of curing,	
		plasticizers effect, Thermo gravimetric analysis (TGA) - Introduction Principle,	
		theory, instrumentation, procedure for analysis of sample, factors influence on	
		studies, advantages, disadvantages, applications - Purity, fiber content,	
		composition of compounded rubbers, identification of polymers/rubbers,	
		thermal stability, thermal degradation, kinetics of thermal degradation and IPDT.	
		Dynamic mechanical Analysis (DMA)- Introduction, principle, instrumentation,	
		and its applications.	
Un	nit 5	Microstructural analysis	10h
		X-ray diffractometry: X-ray diffraction analysis, experimental methods,	
		applications-Chain conformations, chain packing, disorder in the crystal, degree	
		of crystallinity, micro structural parameters, degree of orientations.	
		Microscopic analysis: SEM, TEM, AFM; Morphology of polymers,	
		Crystallization behavior, phase separation and other applications.	
Ref	erence	es:	
1.	D.Ca	mpbell and J.R. White – Polymer Characterization – Physical Techniques (Chapman	n and
	Hall)	, 1989	
2.	F.W.	Billmeyer-Text book of Polymer Science - 3 rd ed. Wiley Interscience, 1984.	
3.	K.J.S	aunders-The Identification of Plastics and Rubber, Chapman and Hall, London 1970	
4.	Willi	am C. Wake - Analysis of Rubber and Rubber like Polymers – Rev. ed. V	Viley
	Inters	science, New York 1969.	
5.	E.Tu	ri -Thermal Characterization of Polymeric materials -Academic Press, New York 1981	•
L		***	

MSE130: MATERIALS STRUCTURE PROPERTY RELATIONS (5-0-0)

Course Outcomes: Upon successful completion of this course, the students will be able to

CO1: Explain Structure Property Relations of Metals and Alloys

CO2: Explain Structure Property Relations of Ceramics

CO3: Explain Structure Property Relations of Polymers

CO4: Explain Structure Property Relations of Composites

CO5: Explain Structure Property Relations of Advanced Materials

Course Content

Unit 1	Structure Property Relations of Metals and Alloys: Solid Solutions and	10h
	Alloys, Phase Transitions, Overview of Crystal Structures, Structure - Property	
	Relations of ferrous and nonferrous alloys, Neumann's Principle, Thermal	
	properties, Optical properties, Electrical properties, Dielectric properties,	
	Magnetic properties and mechanical properties of metals. Effect of alloying,	
	combinations of metals and nonmetals. Effect of processing conditions on	
	properties, microstructure development. Prediction of structure and properties	
	based on composition of the alloy. Numerical problems.	
Unit 2	Structure Property Relations of Ceramics: Crystal structure of ceramic	10h
	materials, structure induced properties, thermal, chemical, mechanical, electrical,	
	dielectric, magnetic and optical properties of ceramics. Toughened ceramics,	
	Concept of various toughening mechanisms, structure property correlation in	
	ceramics. Emphasis on the effects of composition, microstructure, processing,	
	temperature and atmosphere on the properties of ceramics.	
Unit 3	Structure Property Relations of Polymers: Inter-chain and intra-chain forces of	10h
	interactions in polymers; determination of tacticity and crystallinity, strain	
	induced morphology. The concept of polymer properties (fundamental,	
	processing and product properties); Structural basis for polymers to be elastomers,	
	fibers and plastics. Understanding polymer-solvent interactions, factors	

influencing Tg and Tm. Viscous flow, Kinetic theory of rubber elasticity, Visco-

elasticity, mechanical damping, generalized stress-strain relationship for

polymers. Effect of various additives on polymer behavior. Group contribution on

12

	properties.	
Unit 4	Structure Property Relations of Composites: Metal and polymer composite	10h
	properties, effect of interphase structure on composite properties, property	
	prediction based on composition of constituent phases and additives, some case	
	studies of metal and polymer composites/nanocomposites.	
Unit 5	Structure Property Relations of Advanced Materials: Types of advanced	10h
	materials, advanced material structures and properties, influence of molecular	
	structure to predict the properties of specialty polymers, nanomaterials,	
	biomaterials, smart materials, superalloys, superconductors and shape memory	
	alloys.	
Poforono		<u>I</u>

1. V. Krevelen. Properties of Polymers: Correlations with chemical structure, Elsevier Pub., New York, 1972.

- 2. R. B. Seymour. Structure-property relationships in polymers, Plenum Press, New York, 1984.
- 3. Patrick Meares. Polymers-structure and bulk properties, Van Nostrand Pub., New York, 1965.
- A Russell, K L Lee. Structure-Property Relations in Nonferrous Metals. John Wiley and Sons, 2005.
- 5. R. E. Newnham, Structure-Property Relations. Springer Science and Business Media, 2012.
- Tao Xu. The Structure-property Relation in Nanocrystalline Materials: A Computational Study on Nanocrystalline Copper by Monte Carlo and Molecular Dynamics Simulations, Georgia Institute of Technology, 2009.

MSE141: CERAMIC SCIENCE AND TECHNOLOGY (5-0-0)

Course Outcomes: Upon successful completion of this course, the students will be able to

CO1: Explain the classification, bonding and structure of ceramics.

CO2: Correlate the structure with properties of ceramics.

CO3: Explain the conventional ceramic types, properties and applications.

CO4: Explain the advanced ceramic types, properties and applications.

CO5: Explain the concepts of ceramic fabrication and processing.

Course Content		
Unit 1	Introduction: Ceramics as a class of material, raw materials, bonding and	10h
	structure of ceramic materials, crystal structure and defects, chronological	
	developments, polymorphic transformations. Classification of ceramic materials	
	conventional and advanced, Structural and functional, areas of applications.	
	Ceramic Binary and ternary systems, ceramic phase equilibrium diagrams: Al_2O_3 -	
	SiO ₂ system, MgO-Al ₂ O ₃ -SiO ₂ system, non-equilibrium phases. Development of	
	microstructure in equilibrium and nonequilibrium phases, calcinations. Structural	
	ceramics: oxides, carbides, nitrides and borides, characteristics of ceramic solids	
	and ceramic microstructures.	
Unit 2	Properties of Ceramics: Thermal, chemical, mechanical, electrical, dielectric,	
	magnetic and optical properties of ceramics. Brittle Failure: Statistical Design for	
	Strength, Thermal Shock/Anisotropy-Induced Microcracking. Mechanical	
	behavior of structural ceramics-Brittleness of ceramics, Concept of fracture	
	toughness and different toughness and strength measurement techniques;	
	Toughened ceramics, Concept of various toughening mechanisms; structure	
	property correlation. Emphasis on the effects of composition, microstructure,	
	processing, temperature and atmosphere on the properties of ceramics.	
Unit 3	Conventional Ceramics: Refractories - Classification of refractories, modern	10h
	trends and developments, basic raw materials, elementary idea of manufacturing	
	process, basic properties and areas of application. Whitewares: classification and	
	type of whitewares, elementary idea of manufacturing process, basic properties	
	and applications. Ceramic Coatings: Types of glazes and enamels, elementary	
	ideas on compositions, process of enameling and glazing and their properties.	
	Glass: Definition of glass, Basic concepts of glass structure, Batch materials and	
	minor ingredients and their functions, elementary concept of glass manufacturing	
	process, types of glasses, application of glasses.	
	Cement and Concrete: Concept of hydraulic materials, Basic raw materials,	
	Manufacturing process and applications. Abrasives.	
Unit 4	Advanced Ceramics: Bio-ceramics, space ceramics, automotive ceramics,	10h

electronic ceramics, superconducting ceramics, porous ceramics, piezo electric, pyroelectric, ferroelectric and electrooptic ceramics, elementary ideas of their preparation, properties and applications. Applications of electronic ceramics in devices and in optical communication. Ceramics for microwave applications, luminescent and photoconducting ceramics. Thin film techniques for electronic applications, cermets, ceramics for application in armored, aerospace and space vehicles.

Unit 5 Ceramic Fabrication and Processing: selection of raw materials, control of microstructure, crushing, grinding and milling of ceramics. Characterization of ceramic powders – surface area, morphology, structure. Ceramic powders by coprecipitation, hydrothermal, flash pyrolysis, sol-gel processing, cryo-chemical and freeze drying techniques. Packing of powders, classification and scope of various fabrication methods. Dry and semi dry pressing, slip casting. Rapid prototyping, electrophoretic casting and electro-spinning. Drying and Firing of ceramics, elementary ideas of various furnaces used in ceramic industries. Sintering of ceramics- thermodynamic and process aspects. Ceramic coatings and their deposition; thick and thin film coatings – PVD and CVD techniques. Vapor infiltration techniques, fabrication of ceramic composites, ceramic membranes and ceramic nano-composites.

References:

- D. W. Richerson. Modern Ceramic Engineering Properties Processing and Use in Design. 3rd Edition, CRC Press, 2006.
- S. Somiya. Handbook of Advanced Ceramics: Materials, Applications, Processing and Properties. Vol. II, Elsevier Academic Press, 2013.
- 3. F. H. Norton. Elements of Ceramics. 2nd Edition, Addison Wesley, 1974.
- W. D. Kingery, H. K. Bowen, D. R. Uhlhmen. Introduction to Ceramics, 2nd Edition, John Wiley, 1976.
- 5. J. B. Watchman. Mechanical properties of ceramics. John Wiley, New York, 1996.
- Y. M. Chiang, D. P. Birnie, W.D. Kingery. Physical Ceramics: Principles for Ceramic Science and Engineering. John Wiley, 1997.

MSE142: COMPUTATIONAL MATERIAL SCIENCE (4-1-0)

Course Outcomes: Upon successful completion of this course, the students will be able to

CO1: Explain the basic concepts of computational material science

CO2: Explain Time reversal and inversion symmetries

CO3: Explain Functional for exchange and correlation

CO4: Determine electronic structure of materials using computational tools

CO5: Solve material science problems using the molecular dynamics and first principle methods.

Unit 1	Introduction and Basic concepts: Fundamentals of atomic level modeling of the	10h
	structure and properties of materials. Theoretical Background, basic equations for	
	interacting electrons and nuclei, Coulomb interaction in condensed matter,	
	Independent electron approximations, Exchange and correlation, Periodic solids and	
	electron bands, structures of crystals, The reciprocal lattice and Brillouin zone,	
	Excitations and the Bloch theorem. Basics of the density functional theory and	
	approximations in terms of pair potentials, embedded atom method and tight-	
	binding.	

- Unit 2 Time reversal and inversion symmetries: Integration over the Brillouin zone and special points, Density of states uniform electron gas and simple metals. Non-interacting and Hartree-Fock approximation, The correlation hole and energy. Density functional theory: foundations, Thomas-Fermi-Dirac approximations: example of a functional. The Hohenberg-Kohn theorems, constrained search formulation of density functional theory, Extensions of Hohenberg-Kohn theorems, The Kohn-Sham ansatz. Replacing one problem with another: The Kohn-Sham variational equations Exc, Vxc and the exchange correlation hole meaning of the eigenvalue. Intricacies of exact Kohn-Sham theory.
- Unit 3Functionals for exchange and correlation: The local spin density approximation10h(LSDA), Generalized-gradient approximation (GGAs), LDA and GGA expressionsfor the potential Vxc(r), Non-collinear spin density, Non-local density formulations:ADA and WDA, Orbital dependent functionals I: SIC and LDA+U. Orbital

	dependent functional II: OEP and EXX, Hybrid functionals, Tests of functionals	
	Solving Kohn-Sham equations - Self-consistent coupled Kohn. Sham equations -	
	Total energy functionals, Achieving self-consistency – Numerical mixing schemes,	
	Force and stress.	
Unit 4	Determination of electronic structure: Atomic sphere approximation in solids,	10h
	Plane waves and grids: basics - The independent particle Schrodinger equation in a	
	plane wave basis. The Bloch theorem and electron bands - Nearly free-electron-	
	approximation - Form factors and structure factors. Plane-wave method - 'Ab initio'	
	pseudopotential method - Projector augmented waves (PAWs) - Simple crystals:	
	structures, bands - Supercells: surfaces, interfaces, phonons, defects - Clusters and	
	molecules. Localized orbitals: tight-binding - Tight-binding bands: illustrative	
	examples - Square lattice and CuO2 planes - Examples of bands: semiconductors	
	and transition metals - Electronic states of nanotubes. Localized orbitals: full	
	calculations - Solution of Kohn-Sham equations in localized bases. Analytic basis	
	functions: gassians - Gassian methods: ground state and excitation energies -	
	Numerical orbitals - Localized orbitals: total energy, force and stress - Applications	
	of numerical local orbitals - Green's function and recursion methods - Mixed basis.	
Unit 5	Augmented plane waves (APW's) and 'muffin-tins' - Solving APW equations:	10h
	examples Muffin-tin orbitals (MTOs). Linearized augmented plane waves (LAPWs)	
	- Applications of the LAPW method - Linear muffin-tin orbital (LMTO) method -	
	Applications of the LMTO method - Full potential in augmented methods -	
	Molecular dynamics (MD): forces from the electrons - Lattice dynamics from	
	electronic structure theory - Phonons and density response functions - Periodic	
	perturbations and phonon dispersion curves - Dielectric response functions, effective	
	charges - Electron-phonon interactions and superconductivity.	
Refere	nces:	
1.	J. G. Lee. Computational Material Science - An Introduction. Second edition, CRC I	Press,
	2016.	
2.	H. Skriver. The LMTO Methods, Springer, 1984.	
3.	E. Kaxiras, Atomic and Electronic Structure of Solids, Cambridge University Press, 200)3.

- 4. R.M. Martin. Electronic Structure Basic Theory and Practical Methods, Cambridge University Press, 2004.
- 5. R. Dronskowski. Computational Chemistry of Solid State Materials, Wiley VCH, 2005.
- 6. E. B. Tadmor. Modeling Materials Continuum, Atomistic and Multiscale Techniques, Cambridge University Press, 2012.

MSE 14	3: MATERIAL FAILURE ANALYSIS (5-0-0)	
Contact	Hours: 5/week	
Course	Content:	
Unit 1	The perspective on failure and direction of approach, isotropic base lines: failure	10h
	characterization, stress versus strain, failure theory for isotropic materials and their	
	failure behavior	
Unit 2	Experimental and theoretical evaluation	10h
Unit 3	Failure theory applications, ductile /brittle transition for isotropic materials. Defining	10h
	yield and failure stress.	
Unit 4	Fracture mechanics, anisotropic unidirectional fibre composite failure. Anisotropic	10h
	fibre composite laminate's failure.	
Unit 5	Micro mechanics failure analysis. Nanomechanics failure analysis. Damage,	10h
	cumulative damage, creep and fatigue failure, probabilistic failure and life prediction.	
Referen	ce	
1. Christensen, The theory of materials failure, Oxford University Press, UK, 2010.		

MSE144: BLENDS AND ALLOYS

Course Outcomes:

Upon successful completion of this course, the students will be able to-

CO1: Explain the basic and fundamental concepts of blends and alloys

CO2: Explain the fundamental concepts and importance of polymer miscibility

CO3: Describe the preparation of blends using different methods.

CO4: Analyze the properties of blends by different characterization techniques.

CO5: Acquire the knowledge on engineering and commodity polymer blends

Course Content:		
Unit 1	Introduction: Alloying and blending, historical outline of industrial development of	10h
	polymer blends and alloys, definitions, the reasons for and methods of blending, how	
	to select blend components, fundamental principles for development of polymer alloys	
	and blends. How to design a polymer blend.	
Unit 2	Polymer-polymer miscibility: General principles of phase equilibria calculation,	10h
	theories of liquid mixtures containing polymer: Huggins-Flory theory, Mechanisms of	
	phase separation, general types of polymer blends, polymer crystallization,	
	morphology of blends, compatibilzed blends, interpenetrating polymer network in	
	polymer blends	
Unit 3	Blend preparation equipment: Mixers and their various types like banbury, hot and	10h
	cold mixers, twin screw compounders, and two- roll mills, etc. Design features of	
	these equipments like rotor types, screws and their various types; flow behavior of the	
	plastic material in the mixing equipments and theory of mixing.	
Unit 4	Characterization of Blends: Phase equilibria methods- turbidity, light scattering,	10h
	SAXS, measurement of polymer/polymer interaction parameter by direct methods and	
	SAXS, measurement of polymer/polymer interaction parameter by direct methods and ternary system containing solvent; Indirect methods - T_g (DSC, DMA), IR and	
	SAXS, measurement of polymer/polymer interaction parameter by direct methods and ternary system containing solvent; Indirect methods - T_g (DSC, DMA), IR and Microscopy.	
Unit 5	 SAXS, measurement of polymer/polymer interaction parameter by direct methods and ternary system containing solvent; Indirect methods - T_g (DSC, DMA), IR and Microscopy. Commercial polymer blends /alloys and applications: Blends of engineering and 	10h
Unit 5	 SAXS, measurement of polymer/polymer interaction parameter by direct methods and ternary system containing solvent; Indirect methods - T_g (DSC, DMA), IR and Microscopy. Commercial polymer blends /alloys and applications: Blends of engineering and commodity plastics like PVC/ABS, PVC/SAN, PVC/NBR, PC/PET, PC/PBT, 	10h
Unit 5	 SAXS, measurement of polymer/polymer interaction parameter by direct methods and ternary system containing solvent; Indirect methods - T_g (DSC, DMA), IR and Microscopy. Commercial polymer blends /alloys and applications: Blends of engineering and commodity plastics like PVC/ABS, PVC/SAN, PVC/NBR, PC/PET, PC/PBT, PC/ABS; PPO/HIPS - Study in detail along with properties and applications; 	10h
Unit 5	 SAXS, measurement of polymer/polymer interaction parameter by direct methods and ternary system containing solvent; Indirect methods - Tg (DSC, DMA), IR and Microscopy. Commercial polymer blends /alloys and applications: Blends of engineering and commodity plastics like PVC/ABS, PVC/SAN, PVC/NBR, PC/PET, PC/PBT, PC/ABS; PPO/HIPS - Study in detail along with properties and applications; Applications of polymer blends and alloys in adhesives, molded products, footwear, 	10h
Unit 5	 SAXS, measurement of polymer/polymer interaction parameter by direct methods and ternary system containing solvent; Indirect methods - Tg (DSC, DMA), IR and Microscopy. Commercial polymer blends /alloys and applications: Blends of engineering and commodity plastics like PVC/ABS, PVC/SAN, PVC/NBR, PC/PET, PC/PBT, PC/ABS; PPO/HIPS - Study in detail along with properties and applications; Applications of polymer blends and alloys in adhesives, molded products, footwear, films, fibers, tyres and tubes, surface coatings, wire and cable compounds, belting and 	10h
Unit 5	 SAXS, measurement of polymer/polymer interaction parameter by direct methods and ternary system containing solvent; Indirect methods - Tg (DSC, DMA), IR and Microscopy. Commercial polymer blends /alloys and applications: Blends of engineering and commodity plastics like PVC/ABS, PVC/SAN, PVC/NBR, PC/PET, PC/PBT, PC/ABS; PPO/HIPS - Study in detail along with properties and applications; Applications of polymer blends and alloys in adhesives, molded products, footwear, films, fibers, tyres and tubes, surface coatings, wire and cable compounds, belting and hoses, miscellaneous uses, current trends in polymer blends and alloys technology. 	10h
Unit 5 Referen	SAXS, measurement of polymer/polymer interaction parameter by direct methods and ternary system containing solvent; Indirect methods - T _g (DSC, DMA), IR and Microscopy. Commercial polymer blends /alloys and applications: Blends of engineering and commodity plastics like PVC/ABS, PVC/SAN, PVC/NBR, PC/PET, PC/PBT, PC/ABS; PPO/HIPS - Study in detail along with properties and applications; Applications of polymer blends and alloys in adhesives, molded products, footwear, films, fibers, tyres and tubes, surface coatings, wire and cable compounds, belting and hoses, miscellaneous uses, current trends in polymer blends and alloys technology. ces	10h
Unit 5 Referen 1. Utrad	SAXS, measurement of polymer/polymer interaction parameter by direct methods and ternary system containing solvent; Indirect methods - T _g (DSC, DMA), IR and Microscopy. Commercial polymer blends /alloys and applications: Blends of engineering and commodity plastics like PVC/ABS, PVC/SAN, PVC/NBR, PC/PET, PC/PBT, PC/ABS; PPO/HIPS - Study in detail along with properties and applications; Applications of polymer blends and alloys in adhesives, molded products, footwear, films, fibers, tyres and tubes, surface coatings, wire and cable compounds, belting and hoses, miscellaneous uses, current trends in polymer blends and alloys technology. ces	10h
Unit 5 Referen 1. Utrac 2. Paul	SAXS, measurement of polymer/polymer interaction parameter by direct methods and ternary system containing solvent; Indirect methods - Tg (DSC, DMA), IR and Microscopy. Commercial polymer blends /alloys and applications: Blends of engineering and commodity plastics like PVC/ABS, PVC/SAN, PVC/NBR, PC/PET, PC/PBT, PC/ABS; PPO/HIPS - Study in detail along with properties and applications; Applications of polymer blends and alloys in adhesives, molded products, footwear, films, fibers, tyres and tubes, surface coatings, wire and cable compounds, belting and hoses, miscellaneous uses, current trends in polymer blends and alloys technology. ces cki, Polymer blends and alloys, Hanser Publication. and Newman, Polymer blends : Academic press	10h

4. John A Manson and Lesliw H Sperling, Polymer blends and composites, Plenum Press, New York.

MSE145	5: APPLIED MATHEMATICS (4:1:0)	
Course	Outcome: Upon successful completion of this course, the students will be able to-	
CO1 : Re	ecognize ODEs / PDEs and apply suitable numerical methods to solve them.	
CO2: So	olve systems of linear equations by exact / approximate methods, determine eigen values.	
CO3: Re	ecognize suitable techniques to handle the given data and adopt correct method for curve	
fit	ting.	
CO4: De	etermine values of functions by applying proper algorithms.	
СО5: На	andle and interpret large data and compute measures of central tendency and deviations fr	rom
me	easures of central tendency.	
Course	Content:	
Unit 1	Ordinary and partial differential equations: basic definitions and classification;	10h
	examples from physical world - mass-spring system ODE, heat equation, wave	
	equation and diffusion equation.	
	Systems of linear equations and matrix computations: basic terminology $-$	
	consistency, over determined systems; exact and approximate solutions of systems of	
	$linear\ equations-Gauss/Gauss-Jordan\ elimination,\ LU-factorisation,\ Gauss/Gauss-Interval and Interval an$	
	Seidel iterative method; eigenvalues / eigenvectors $-$ characteristics equation, power	
	method of determining the dominant eigenvalue; inverses of square matrices.	
Unit 2	Curve fitting: Polynomial interpolation - Newton difference formulas, Lagrange	10h
	interpolation, Bezier curves; least square fitting lines / quadratic curves.	
	Root finding: Method of bisection, Chord method, Newton-Raphson's method and	
	combinations of these methods;	
	Statistics: measures of central tendencies, measures of deviations from central	
	tendencies; correlation; basic sampling theory.	
Unit 3	Introduction to machine computation: Number representation on a machine – min /	10h
	max representable numbers, machine epsilon; errors arising out of approximations and	
	propagation of errors – absolute / relative errors, error propagation during addition /	
	multiplication of numbers, catastrophic addition	
Unit 4	Computational Softwares: Numerical packages (Matlab / Scilab / Bench Calculator),	20h

symbolic Algebra packages (Maple/Mathematica) and statistical packages (DataMelt/ R/SciPy). The practical will consists of using some of the above softwares to solve problems from the topics dealt with in the first part of the course.

Reference:

 Applied numerical methods for Engineers using MATLAB. 1st edition, R J Schilling and S L Harris. Brooks/Cole Publishing Co. USA, 1999.

MSE146: ADDITIVE MANUFACTURING TECHNOLOGY (5:0:0)

Contact Hours: 5/week

Course outcomes: Upon successful completion of this course, the students will be able to

- **CO 1:** Explain development and growth of additive manufacturing methods and its applications.
- **CO 2:** Explain suitability of different types of materials for additive manufacturing and will be able design the process for making simple and complex geometries
- **CO 3:** Explain principles behind various layer manufacturing techniques with special emphasis to Powder Bed Fusion, STL, Digital Light Processing, Micro Stereolithography, Vat Photo polymerization Processes.
- **CO 4:** Explain principles behind various layer manufacturing techniques with special emphasis to Fused Layer Modeling, Sheet Lamination, Powder-Binder Bonding and Three dimensional printing.
- **CO 5:** Explain principles behind various layer manufacturing techniques with special emphasis to jetting, directed energy deposition processes, direct write technologies and the machines used for these processes.

Course Content:

Unit 1Introduction: Terminologies (Additive manufacturing, Layer-Based Manufacturing,10hrapid prototyping, Stereolithography, 3D printing, selective laser sintering, directintercession10hmetal laser sintering), History of additive manufacturing, benefits of additiveintercession10hmanufacturing, The generic AM process, additive manufacturing vs CNC machining,in AMin AM

Unit 2	Materials, Design, and Quality Aspects for Additive Manufacturing: Materials	10h
	for AM (Anisotropic Properties, Basic Isentropic Materials: Plastics, metals,	
	ceramics, composites), Engineering Design Rules for AM, Additive Manufacturing	
	Design and Strategies; AM Unique Capabilities, Complex Geometries, Integrated	
	Geometry, Integrated Functionalities, Multi-Material Parts and Graded Materials.	
Unit 3	Layer Manufacturing Processes: (Principle, classification, materials, process	10h
	parameters, merits and demerits of) Powder Bed Fusion Processes, Polymerization	
	(Laser-Stereolithography, Polymer Printing and Jetting, Digital Light Processing,	
	Micro Stereolithography, Vat Photopolymerization Processes)	
Unit 4	Layer Manufacturing Processes: (Principle, classification, materials, process	10h
	parameters, merits and demerits) Extrusion-Based Systems (Fused Layer	
	Modeling), Sheet Lamination Processes, Powder-Binder Bonding – Three	
	Dimensional Printing.	
Unit 5	Layer Manufacturing Processes: (Principle, classification, materials, process	10h
	parameters, merits and demerits of) Material Jetting, Binder Jetting, Directed	
	Energy Deposition Processes, Direct Write Technologies, Other Processes:	
	Aerosolprinting, Bioplotter, Multifunctional printing, Guidelines for Process	
	Selection, Machines for Additive Manufacturing, Post processing techniques.	
Refere	nces:	I
1.	Ian Gibson, David Rosen and Brent Stucker (Ed), Additive Manufacturing Technologies	; 3D
	Printing, Rapid Prototyping, and Direct Digital Manufacturing (2 nd edition),	
	Springer, New York, 2015.	
2.	Amit Bandyopadhyay and Susmita Bose (Ed.), Additive Manufacturing, Boca Raton,	
	London, 2016.	
3.	Andreas Gebhardt (Ed), Understanding Additive Manufacturing; Rapid Prototyping, Rap	oid
	Tooling Panid Manufacturing Hansar Publishers Munich 2011	
	roomig, Kapiu Manufacturing, Hanser Fuonsners, Munich, 2011.	

MSE147: STATISTICAL QUALITY CONTROL Contact Hours: 5/week

Course Content:		
Quality improvement in the modern business environment: The Meaning of	10h	
Quality and Quality Improvement Dimensions of Quality, Quality Engineering		
Terminology, A Brief History of Quality Control and Improvement, Statistical		
Methods for Quality Control and Improvement		
Statistics and Sampling Distributions: Sampling from a Normal Distribution,	10h	
Sampling from a Bernoulli Distribution ,Sampling from a Poisson Distribution, Point		
Estimation of Process Parameters, Statistical Inference for a Single Sample, Inference		
on the Mean of a Population, Variance Known, The Use of P-Values for Hypothesis		
Testing, Inference on the Mean of a Normal Distribution, Variance Unknown,		
Inference on the Variance of a Normal Distribution, Inference on a Population		
Proportion, The Probability of Type II Error and Sample Size Decisions, Statistical		
Inference for Two Samples , Inference for a Difference in Means, Variances Known,		
Inference for a difference in means of two normal distributions, variances unknown,		
inference on the variances of two normal distributions, linear regression models,		
estimation of the parameters in linear regression models		
Methods and philosophy of statistical process control: Introduction, Chance and	10h	
Assignable Causes of Quality Variation, Statistical Basis of the Control Chart, Basic		
Principles, Choice of Control Limits, Sample Size and Sampling Frequency, Rational		
Subgroups, Analysis of Patterns on Control Charts, Discussion of Sensitizing Rules		
for Control Charts, Phase I and Phase II of Control Chart Application, The Rest of the		
Magnificent Seven, Implementing SPC in a Quality Improvement Program, An		
Application of SPC, applications of statistical process control and quality		
improvement tools in transactional and service businesses		
Control charts for variables: Introduction control Charts for $-x$ and R , Statistical	10h	
Basis of the Charts, Development and Use of -x and R Charts, Charts Based on		
Standard Values Interpretation of -x and R Charts, The Effect of Nonnormality on -x		
and R Charts, The Operating-Characteristic Function, The Average Run Length for		
the second constant Charte for second of Constant in and Operation of second of		
the $-x$ Chart, Control Charts for $-x$ and s, Construction and Operation of $-x$ and s		
	 Content: Quality improvement in the modern business environment: The Meaning of Quality and Quality Improvement Dimensions of Quality, Quality Engineering Terminology, A Brief History of Quality Control and Improvement. Statistics and Sampling Distributions: Sampling from a Normal Distribution, Sampling from a Bernoulli Distribution, Sampling from a Poisson Distribution, Point Estimation of Process Parameters , Statistical Inference for a Single Sample ,Inference on the Mean of a Population, Variance Known , The Use of P-Values for Hypothesis Testing, Inference on the Mean of a Normal Distribution , Variance Unknown, Inference on the Variance of a Normal Distribution , Inference on a Population Proportion, The Probability of Type II Error and Sample Size Decisions, Statistical Inference for a difference in means of two normal distributions, variances unknown, inference on the variances of two normal distributions, linear regression models, estimation of the parameters in linear regression models Methods and philosophy of statistical process control: Introduction, Chance and Assignable Causes of Quality Variation , Statistical Basis of the Control Chart, Basic Principles, Choice of Control Limits, Sample Size and Sampling Frequency, Rational Subgroups , Analysis of Patterns on Control Charts, Discussion of Sensitizing Rules for Control Charts, Phase I and Phase II of Control Chart Application, The Rest of the Magnificent Seven, Implementing SPC in a Quality Improvement Program, An Application of SPC, applications of statistical process control and quality improvement tools in transactional and service businesses Control charts, Development and Use of -x and R Charts, Charts Based on Standard Values Interpretation of -x and R Charts, The Operating-Characteristic Function, The Average Run Length for the ax Obert Control Charts for -x and s Construction and Operation of -x and s 	

Unit 5 Control Charts For Attributes: Introduction, The Control Chart for Fraction 10h Nonconforming, Development and Operation of the Control Chart Variable Sample Size Applications in Transactional and Service Businesses, The Operating-Characteristic Function and Average Run Length Calculations, Control Charts for Nonconformities (Defects) Procedures with Constant Sample Size, Procedures with Variable Sample Size ,Demerit Systems The Operating-Characteristic Function Dealing with Low Defect Levels, Nonmanufacturing Applications, Choice Between Attributes and Variables Control Charts The Acceptance-Sampling Problem Lot-By-Lot Acceptance Sampling For: Advantages and Disadvantages of Sampling Types of Sampling Plans Lot Formation Random Sampling Guidelines for Using Acceptance Sampling Single-Sampling Plans for Attributes Definition of a Single-Sampling Plan The OC Curve Designing a Single-Sampling Plan with a Specified OC Curve Rectifying Inspection Double, Multiple, and Sequential Sampling Double-Sampling Plans Multiple-Sampling Plans Sequential-Sampling Plans; IATF; Latest softwares like mini tab.

Reference:

1. Introduction to Statistical Quality Control, Sixth Edition, DOUGLAS C. MONTGOMERY, John Wiley and Sons, Inc,

MSE151: COMPUTER AIDED DESIGN AND MANUFACTURING (5-0-0)

Course Outcomes: Upon successful completion of this course, the students will be able to

CO1: Explain the fundamentals of CAD

CO2: Explain solid modeling and its construction

CO3: Explain concepts of NC and extensions of NC

CO4: Explain the Concepts of GT, FMS, AGV's, AS / RS systems

CO5: Explain Various planning systems and process monitoring

Course Content:

Unit 1Introduction ;Product Life Cycle, Design Process, Application of Computers for
Design, Benefits of CAD, Computer configuration for CAD Applications, Grover's
Model of Product life Cycle for Selection of CAD/CAM. Configuration of graphics10h

	workstations, Fundamentals of 2D graphics, Menu design and Graphical User	
	Interface (GUI), Parametric Programming, Vector representation of geometric entities,	
	Homogeneous coordinate systems, Geometric transformations.	
Unit 2	Solid Modeling Fundamentals: Topology of Closed Paths, Piecewise flat surfaces,	10h
	topology of closed curved surfaces, Generalized Concept of boundary, Set theory,	
	Boolean operators, Set-membership Classification, Euler operators, Formal Modeling	
	Criteria.	
	Solid Model Construction: Graph Based methods, Boolean models, Instances and	
	Parameterized Shapes, Cell Decomposition and spatial-Occupancy Enumeration,	
	Sweep Representation, Constructive Solid Geometry, Boundary Representation	
	Transformations: Translation, Rotation, Scaling Symmetry and Reflection,	
	Homogeneous Transformations.	
Unit 3	CAM: Introduction to manufacturing systems and their performance analysis	10h
	automation, computer integrated manufacturing (CIM).	
	Numerical Control (NC): Introduction, numerical control – its growth and	
	development, components of NC system, input devices, control systems - point to	
	point, straight cut, and continuous path NC, open loop and closed loop NC systems,	
	NC interpolations – linear, circular, helical, parabolic and cubic interpolation,	
	applications of NC systems, merits and demerits.	
	Extensions of NC: Concepts of computer numerical control (CNC), machining center	
	and direct numerical control (DNC) and their advantages.	
Unit 4	Material Handling and Storage: Overview of material handling equipments,	10h
	automated material handling equipments - AGVs, conveyor systems, performance	
	analysis of material handling systems, automated material storage systems - ASRS	
	and carousel storage, analysis of automated storage systems. Group Technology and	
	FMS : Part families - Part classification and coding systems - production flow	
	analysis- Machine cell design - Benefits of GT -FMS- Concept	
Unit 5	Computer Aided Inspection: Coordinate Measuring Machine - Components of	10h
	CMM- Construction-types measuring head-types of probe- measuring accuracy-	
	calibration of CMM performance of CMM- Non contact CMM -Basics of machine	

vision

Manufacturing Planning Systems and Process Control:

CAPP - Computer Integrated production planning systems –MRP- Capacity planning-Shop Floor control -factory Data collection systems – process monitoring, supervisory computer control.

References:

- 1. Zeid Ibrahim, CAD/CAM theory and practices, McGraw Hill international edition. 2009.
- 2. K. Lalit Narayan, K. Mallikarjuna Rao, M.M.M. Sarcar, "Computer Aided Design and Manufacturing", Prentice Hall of India, 2008.
- Groover, M. P, Automation, Production systems and Computer Integrated Manufacturing, Prentice-Hall. 2008
- 4. Singh, N., Systems Approach to Computer Integrated Design and Manufacturing, John Wiley and Sons Wiley, 1996
- 5. Chang, T.-C., Wysk, R.A. and Wang, H.P, Computer Aided Manufacturing, Prentice Hall.1991
- 6. Besant, C. B. and Lui, C. W. K., Computer Aided Design and Manufacture, E. Horwood, 1986
- P. N., Tiwari, N. K. and Kundra, T.K., Computer Aided Manufacturing, Rao, Tata McGraw-Hill Education, 1993.

MSE152: TECHNOLOGY OF PAINTS AND SURFACE COATING

Course Outcomes:

Upon successful completion of this course, the students will be able to:

- CO 1: Explain the components of paints, paint making and methods of paint application.
- CO 2: Describe the equipments used for the preparation of pigment dispersion.
- CO 3: Identify different surface preparation and paint application methods
- CO4: Test and evaluate the important properties of surface coatings.
- CO 5: Select and formulate different surface coating for different application.

Course Content:

Unit 1	Paint composition and application – A general Introduction: Components of paint,	10h
	paint making, methods of application, Organic film formers, pigments, solvents,	
	thinners, diluents and other additives for paint	
Unit 2	Paint preparation: Pigment dispersion: Factors affecting pigment dispersion,	10h
	Preparation of pigment dispersion: grinding equipment, additives for pigment	
	dispersion	
Unit 3	Surface preparation and paint application: Surface cleaning methods: mechanical	10h
	cleaning, solvent cleaning, alkali cleaning and acid pickling, Chemical conversion	
	treatments: Phosphating and chromating, Paint application methods: brushing, dip	
	coating and flow coating, curtain coating, roller coating and spray painting, electro	
	deposition, chemiphoretic deposition.	
Unit 4	Paint properties and Evaluation: Mechanism of film formation, Factors affecting	10h
	coating properties, methods used for film formation. Evaluation of mechanical,	
	optical, ageing, rheological, corrosion, adhesion properties of coatings and Pigment to	
	binder ratio calculation (PBR)	
Unit 5	Types of coatings: Appliance finishes, automotive finishes, coil coating, can coating,	10h
	marine coating and aircraft coating, industrial protective coatings, Water borne	
	coatings, radiation curable coatings, powder coatings, High solids coatings, Smart	
	Paint Technology, Trouble shooting, Colour Science/Technology	
	References:	
	1. Swaraj Paul, Surface coatings; Science and Technology,2nd edition, John Wiley	
	and Sons, Inc., 1995.	
	2. R Lambourne and T R Strivens, Paint and Surface Coatings. Theory and practice,	
	2 nd edition, Woodhead Publishing Limited, 1999.	

MSE153: RESEARCH METHODOLOGY (4:1:0)

Course Outcome: Upon successful completion of this course, the students will have an ability to-

CO1: Explain literature survey, indentify the gap and undertake research.

CO2: Critically evaluate current research and propose possible alternate directions for further work.

CO3: Explain hypothesis and methodology for research.

CO4: Apply basic statistics in research and document research results.

CO5: Comprehend and communicate their scientific results clearly for peer review.

Course Content		
Unit 1	Objectives and types of research: Motivation and objectives – Research methods vs	10h
	Methodology. Types of research – Descriptive vs. Analytical, Applied vs.	
	Fundamental, Quantitative vs. Qualitative, Conceptual vs. Empirical. Literature	
	survey tools/ search engines (Thomson Innovation, Scifinder, web of science).	
Unit 2	Research Formulation: Defining and formulating the research problem - Selecting	10h
	the problem - Necessity of defining the problem - Importance of literature review in	
	defining a problem - Literature review - Primary and secondary sources - reviews,	
	treatise, monographs-patents – web as a source – searching the web - Critical literature	
	review - Identifying gap areas from literature review - Development of working	
	hypothesis.	
Unit 3	Research design and methods: Research design – Basic Principles- Need of research	10h
	design — Features of good design - Important concepts relating to research design -	
	Observation and Facts, Laws and Theories, Prediction and explanation, Induction,	
	Deduction, Development of Models. Developing a research plan - Exploration,	
	Description, Diagnosis, Experimentation. Determining experimental and sample	
	designs.	
Unit 4	Data Collection and analysis: Execution of the research - Observation and	10h
	Collection of data - Methods of data collection - Sampling Methods- Data Processing	
	and Analysis strategies - Data Analysis with Statistical Packages - Hypothesis-testing	
	- Generalization and Interpretation.	
Unit 5	Reporting and thesis writing: Structure and components of scientific reports - Types	10h
	of report - Technical reports and thesis - Significance - Different steps in the	
	preparation - Layout, structure and Language of typical reports - Illustrations and	
	tables - Bibliography, referencing and footnotes - Oral presentation - Planning -	
	Preparation -Practice - Making presentation - Use of visual aids - Importance of	
	effective communication - Application of results and ethics Reproduction of	
	published material, Plagiarism - Citation and acknowledgement - Reproducibility and	

accountability.

Intellectual Property Rights: IPRs- Invention and Creativity- Intellectual Property-Importance and Protection of Intellectual Property Rights (IPRs)- A brief summary of: Patents, Copyrights, Trademarks, Industrial Designs- Integrated Circuits-Geographical Indications-Establishment of WIPO-Application and Procedures.

References:

- 1. Garg, B.L., Karadia, R., and Agarwal, An introduction to Research Methodology, RBSA Publishers, UK, 2002.
- 2. Kothari, C.R., Research Methodology: Methods and Techniques. New Age International, 1990.
- 3. Sinha, S.C. and Dhiman, A.K., Research Methodology, Ess Ess, 2002.
- Trochim, W.M.K., Research Methods: the concise knowledge base, Atomic Dog Publishing. 2005.
- 5. Anthony, M., Graziano, A.M. and Raulin, M.L., Research Methods: A Process of Inquiry, Allyn and Bacon. 2009.
- 6. Day, R.A., How to Write and Publish a Scientific Paper, Cambridge University Press. 1992.
- Fink, A., Conducting Research Literature Reviews: From the Internet to Paper, Sage Publications. 2009.
- 8. Coley, S.M. and Scheinberg, C. A., "Proposal Writing", Sage Publications. 1990,
- 9. K.Eugene Maskus, Intellectual Property Rights in the Global Economy, Washington, DC, 2000
- 10. Subbarau N R, Handbook on Intellectual Property Law and Practice-S Viswanathan Printers and Publishing Private Limited.1998.

MSE1	MSE154: Advanced Polymer Technology (5:0:0)	
Conta	Contact Hours: 5/week	
Cours	e Outcomes: Upon successful completion of this course, the students will be able to	
CO1	Explain the synthesis, structure-property relationships and applications of engineering	
	polymers	
CO2	Explain miscibility of blends and select the polymers for high-performance applications	
CO3	Discuss the performance of polymers as bio-materials, LCPs & membranes.	

Course Content:		
Unit 1	Manufacturing (in brief), process-ability, structure-property relationships and the	10h
	end use (applications) are to be discussed for the following engineering/	
	highperformance polymers with case studies: Polyamides, PET, PBT, PTFE, PC,	
	PCTFE, PVDF, Polyarylate, Polyaramid, Polyimides, Polyamide imides,	
	Polyphenelene Sulphide, Polysulphone.	
Unit 2	Manufacturing (in brief), process-ability, structure-property relationships and the	10h
	end use (applications) are to be discussed for the following engineering/ high	
	performance polymers with case studies: Polyacetals, Poly phenylene oxide	
	(PPO), Polyphenylene ether (PPE), Polyketones (PEK, PEEK), Ultra High	
	Molecular Weight Poly Ethylene, Acrylonitrile butadiene styrene.	
Unit 3	Polymer Blends: Fundamentals of polymer blends and alloys, Designing a	10h
	polymer blend, Mixers, Thermodynamic aspects of blending, Factors affecting	
	miscibility of polymer blends- Thermodynamics, compatibility, solubility	
	parameter, interaction parameter, composition, molecular weight, transition	
	temperature, mechanism of blending, etc. Properties of miscible and immiscible	
	blends. Morphology and Phase behaviours.	
Unit 4	Designing of Blends: Compatibilization (Alloying) Methods- types and role of	10h
	compatibilizer, compatibilization methods, IPNs, mechanism and properties of	
	compatibilized blends. Degree of compatibilization. Mechanism and theory of	
	toughening, Toughening of thermoplastics and thermosets; Thermoplastic	
	elastomers (TPEs). Blends of engineering polymers- based on PC, Polyamides,	
	Polyesters [Case study including properties and applications].	
Unit 5	Biomaterials, Liquid Crystalline Polymers, Membranes	10h
	Biomaterials: polymeric implant materials (Polyolefins, polyamides, acrylic	
	polymers, fluorocarbon polymers, silicon rubbers, acetals). Biodegradable	
	polymers for medical purposes, Biopolymers in controlled release systems.	
	Biocompatibility & toxicological screening of biomaterials.	
	Polymeric Membranes: Synthetic polymeric membranes and their applications.	
	Liquid Crystalline Polymers: Requirements, classification, examples, properties,	

	applications.
Refere	nces:
1.	Michael L Berins. Plastic Engineering handbook of the society of plastics industry Inc, 5 th
	Ed, Van Nostrand Reinhold, 1991.
2.	Jacqueline I Kroschwitz. Concise Encyclopedia of Polymer Science and Engineering, Wiley,
	1990.
3.	James M Margolis. Engineering Thermoplastics properties and application, Marcel Dekker
	Inc, New York, 1985.
4.	Paul and Newman. Polymer blends, Academic press, NewYork, 1978.
5.	Lloyd M Robeson. Polymer blends- A comprehensive review, Hanser publishers, 2007.
6.	John Mason and Leslie H Sperling. Polymer blends and composites, Plenum Press, New
	York, 1976.
7.	J B Park, Biomaterials - Science and Engineering, Plenum Press, 1984.
8.	Sujata V. Bhat, Biomaterials, Narosa Publishing House, 2002.
9.	Jonathan Black, Biological Performance of materials, Marcel Decker, 1981
10.	C.P.Sharma & M.Szycher, Blood compatible materials and devices, Technomic Publishing
	Co. Ltd., 1991
11.	Piskin and A.S. Hoffmann, Polymeric Biomaterials (Eds), Martinus Nijhoff Publishers.
	(Dordrecht. 1986)
12.	Eugene D. Goldbera, Biomedical Polymers, Akio Nakajima
13.	A . Rembaum & M. Shen, Biomedical Polymers, Mercer Dekkar Inc. 1971
14.	L. Hench & E. C. Ethridge, Biomaterials - An Interfacial approach

MSE155: SEMICONDUCTING, MAGNETIC AND OPTOELECTRONIC MATERIALS (5-0-0)

Course Outcomes: Upon successful completion of this course, the students will be able to

CO1: Understand electronic, magnetic and optical properties of materials

CO2: Explain types and characteristics of semiconducting materials

CO3: Explain types and characteristics of magnetic Materials

CO4: Explain types and characteristics of optoelectronic Materials

CO5: Choose suitable semiconducting, magnetic and optoelectronic materials for given applications.

Course Content

Unit 1	Electronic, magnetic and optical properties of materials: Review of free	10h
	electron and band theories of solids, Hall effect, Temperature dependence of	
	electrical conductivity. Thermoelectric properties of metals and semiconductors,	
	electron transport in amorphous solids, ionic conductivity, super conductivity,	
	piezo-electricity, pyro-electricity and Ferro-electricity. Dielectric constants of	
	solids and liquids, dielectric dispersion and losses.	
	Optical Properties: Refraction, Absorption, Absorption in Dielectrics,	
	Photographic images and Luminescence. Optical constants, atomistic theory of	
	optical properties, quantum mechanical treatment, band transitions, dispersion,	
	plasma oscillations.	
	Magnetic Properties: Dia, Para and Ferromagnetism, Anti ferromagnetism,	
	Helimagnetism, Superparamagnetism, surface magnetism and Ferrimagnetism.	
	Ferromagnetic anisotropy and magnetostriction. Magnetic energy and Domain	
	structure, Hysteresis loop, Demagnetization factor and Magnetoresistance - Gaint	
	magnetoresistance, Tunneling magnetoresistance, Colossal magnetoresistance.	
Unit 2	Semiconducting Materials: Nature of chemical bonds and their relation to crystal	10h
	structure of semiconductors, preparation and doping techniques of elemental and	
	compound semiconductors and their characterization; narrow and wide band gap	
	semiconductors. Direct and indirect band gap semiconductors, intrinsic and	

extrinsic (doped) semiconductors; rapid thermal processing of Si and compound

semiconductors. Organic semiconductors - Fermi level - variation of conductivity,

mobility with temperature - law of mass action, Hall coefficients for intrinsic and

extrinsic semiconductors. Polycrystalline and amorphous Si, CdS/CdTe, CIGS,

	Ge/GaAs/InGaP tandem structure materials.	
Unit 3	Magnetic Materials: Weiss molecular field theory, Heisenberg's theory and	10h
	Magnetic Domains, Ferrimagnetic order, ferrites and garnets, hard and soft	
	magnets, single domain magnets, Magnetism in Rare Earths and	
	Antiferromagnetic Alloys, spin waves, Spin Glasses, Single Domain Particles,	
	Coercivity in fine particles, Spintronics. Dia, Para, Ferromagnetic and Anti	
	ferromagnetic materials. Magnetic data storage materials.	
Unit 4	Optoelectronic Materials: Photoconducting and non-photoconducting materials,	10h
	Photonic crystals. Non-linear optic materials, fibre-optic systems, Organic	
	optoelectronic materials and devices. Optical properties of semiconductors:	
	absorption and emission processes; Kramers-Kronig and Van Roosbroeck-	
	Shockley relations; radiative and non-radiative transitions, Photoluminescence.	
	Optical emission from semiconductors, conditions for laser action, types of lasers.	
	Quantum Confinement: 2-D, 1-D and O-D systems, Quantum well and quantum	
	dot lasers, Quantum Cascade Laser (QCL), Quantum Well Infrared Photodetectors	
	(QWIP).	
Unit 5	Applications of Semiconducting, Magnetic and Optoelectronic Materials:	10h
	Different types of semiconductors and their application in commercial devices:	
	Ge, Si, GaAs, InP, PbS, HgxCd1-xTe. The III-V, II-VI and IV-VI semiconductors	
	and nanostructures for optoelectronic applications. Photo-detectors:	
	photoconducting, photovoltaic, PIN, Avalanche photodiode (APD). Quantum dot	
	solar cell, anti-reflection coating. Principles of semiconductor devices.	
	Applications of magnetic materials.	
Referen	ices:	<u> </u>
1. P. Fu	lay, J-K Lee. Electronic, Magnetic and Optical Materials. CRC Press, 2016.	
2. B. D	. Cullity. Introduction to Magnetic Materials. Addison-Wesley Publications, California	ornia,
Lond	on, 1972.	
3. D. Jil	les. Introduction to Magnetism and Magnetic Materials. Chapman and Hall, 1991.	
4. J. P.	Jakubovics. Magnetism and Magnetic Materials, 2 nd edition, Publisher-Institut	te of
Mate	rials, London, 1994.	

- 5. D. K. Schroder. Semiconductor Material and Device Characterization, 3rd edition, John Wiley and Sons, 2006.
- 6. R. E. Hummel. Electronic Properties of Materials, 3rd edition, Springer 2012.
- 7. Y. Aoyagi and K Kajikawa, Optical Properties of Advanced Materials, Springer, Berlin Heidelberg, 2015.

MSE1	6L: MATERIAL SYNTHESIS AND CHARACTERIZATION LAB
Cours	e outcome: Upon successful completion of this course, the students will be able to-
CO1:	Apply the theoretical knowledge to prepare and characterize the polymers.
CO2:	Qualitatively analyze the prepared polymers.
List of	f experiments:
1.	Bulk polymerization of styrene.
2.	Emulsion polymerization of methylacrylate.
3.	Solution polymerization of acrylonitrile.
4.	Preparation of poly acrylamide by free radical polymerization.
5.	Determination of molecular weight by end-group analysis.
6.	TGA studies of polymer samples.
7.	DSC studies of polymer samples.
8.	FTIR studies of polymer sample
9.	Synthesis and characterization of nanomaterials bysol-gel synthesis
10.	Synthesis and characterization of nanomaterials: Graphene by Hammer's method
11.	Determination of kinetics of spherulite growth using polarized optical microscope
12.	Diffusion and gas permeability measurement of polymer films
13.	Powder synthesis: XRD characterisation, particle size, surface area analysis
14.	Preparation and study of microstructures of cast iron
Refer	ences:
1. P	racticals in Polymer Science - Synthesis and Qualitative and Quantitative Analysis of
N	Iacromolecules
2. I	Dr. Siddaramaiah. Practicals in Polymer Science, CBS publishers. New Delhi, 2007.

- 3. S. Zhang, Lin Li, A. Kumar, Materials Characterization Techniques, CRC press, 2008.
- Y. Leng, Materials Characterization: Introduction to Microscopic and Spectroscopic Methods, John Wiley and Sons (Asia), 2008.
- 5. D.A. Skoog, F.J. Holler, S. R. Crouch, Instrumental Analysis, Cengage Learning, 2007.
- 6. W. Kemp, Organic Spectroscopy, 3rd ed., Pagrave, 2007.
- H.Lee and K. Neville in Encyclopedia of polymer Science and Technology, Vol. 6 Interscience, New York (1967)
- 8. Experiments in polymer Science Collins, Bares and Billmeyer, John Willey and Sons.
- 9. Experimental Methods in Polymer Chemistry Jan F.Rabek, John-Wiley.
- **10.** R.M. Silverstein, Spectrometric identification of organic compounds, 7th ed., John Wiley and Sons, 2007

II SEMESTER

MSE210: ADVANCED COMPOSITE TECHNOLOGY (5:0:0)		
Course Outcomes: Upon successful completion of this course, the students will be able to		
CO1:Explain the basics of composites and select a suitable matrix material		
CO2:Sel	ect a suitable reinforcement to meet the end product requirement.	
CO3: Ex	plain composite processing techniques.	
CO4: Di	scuss the performance of polymer composites and failure mechanisms.	
CO5: Ex	plain designing aspects of polymer composites.	
Course (Content:	
Unit 1	Introduction: Definition, reason for composites, classifications of composites,	10h
	advantages and disadvantages of composites.	
	Metals as matrix materials: raw materials, physical and chemical properties,	
	thermal and mechanical properties	
	Thermoplastic Matrix: Functions of matrix, raw materials, physical and	
	chemical properties, thermal and mechanical properties.	
	Thermoset Matrix: Epoxy; Curing reactions, hardener, gel time, viscosity	
	modifications, Prepeg making. Unsaturated polyester resin; Catalyst, curing	
	reactions, viscosity modifier. Alkyd resin, vinyl ester, cyanate ester, polyimides,	
	physical and chemical properties, thermal behaviour, mechanical properties and	
	uses.	
Unit 2	Reinforcements: Introduction, Functions of fillers, types, properties, chemistry	10h
	and applications of fillers such as silica, titanium oxide, talc, mica, silicon	
	carbide, graphite. Flakes - Both and natural and synthetic should be considered.	
	Fibers-Natural (silk, jute, sisal, cotton, linen) and synthetic, short and long fibers,	
	general purpose and high performance fibers, organic and inorganic fibers -	
	Properties, structure and uses; Glass fiber-classifications, chemistry,	
	manufacturing process. Properties and uses of Nylons, Carbon, Aramid, Boron,	
	aluminum-carbide.	
	Coupling agents: Function, chemistry, methods of applications, advantages and	
	disadvantages.	

Unit 3	Processing of thermoplastic composites: Types of processing methods, matched	10h
	die molding, solution, film, lamination, sandwich. Processing conditions,	
	advantages and disadvantages.	
	Fabrications of thermoset composites: Hand layup method, match die molding,	
	compression and transfer molding, pressure and vacuum bag process, filament	
	winding, pultrusion, RIM, RRIM, VARTM and VERTM, Injection moulding of	
	thermosets, SMC and DMC, Advantages and disadvantages of each method.	
	Fabrications of metal composites: liquid-phase processes, solid-liquid	
	processes, deposition techniques and in situ processes and two- phase (solid-	
	liquid) processes	
Unit 4	Factors influencing on performance of the composites: Aspect ratio, void	10h
	content, length of the fiber, nature of the fiber, structure property relationship	
	between fiber and matrix, modifications of the fiber surface, degree of interaction	
	between and fiber and matrix, wetting behavior, degree of cross linking.	
	Testing of composites: Destructive and non-destructive tests; Destructive-	
	tensile, compression, flexural, ILSS, impact strength and HDT. The basic	
	concepts of fracture mechanisms.	
Unit 5	Composite product design: Introductions, Design fundamentals, definitions,	10h
	structure-material-design relationships, design values and design constraints,	
	uncertainty in product design, constitutes of composite product, design process,	
	decision making in design, design methodologies, material considerations in	
	composite design, numerical problems.	
Reference	es:	
1. Ge	eorge Lubin, Hand book of composites, Van Nostrand Reinhold Company Inc, Ne	w York
19	982	
2. Ni	khilesh Chawla, Krishan K. Chawla, Metal Matrix Composites, Springer Science and	1
В	usiness Media, 2013L.	
3. C.	Hollaway, Polymers and Polymer Composites in Construction, Thomos Telfor	d Ltd.,
L	ondon, UK, 1990.	
4. Jo	hn C. Bittence, Fran Cavern, Engineering Plastics and Composites, Materials data set	ries, 2 nd

edition, ASM International, 1990

- Charles A. Harper, Handbook of Plastics, Elastomers and Composites, Illustrated edition, McGraw Hill Professional, 2002
- Rosato, Designing with Reinforced composites- Technology-Performance, Economics, 2nd Ed. Hanser publications, Newyork, 1997.
- Leif A. Carlssen and Joahn W. Hillispie, Delwane Composite design Encyclopedia (Vol 3) Processing and Fabrication / Technology, Technomic Publishing Ah. Lancaster, U.S.A.
- Nicholas P. Cheremisinoff and Paul N. Cheremmisinoff, Fiber glass Reinforce Plastics and Composites, Noyes Publications, USA. 1995.
- 9. Thomas J. Drozdr, Composite applications the future is now, Society of Manufacturing Engineers, Michigan, 1989.
- 10. Y.C. Ke, P. Strove and F.S. Wang, Polymer layered silicate and silica nano composites. Elsevier, 2005.
- Sanjay K Mazumdar, Composite manufacturing, materials, product and process engineering, CRC Press, London, 2002.
- Vishu Shah, Hand Book of Plastics Testing Technology, 2nd edition, John Wiley and Sons, Inc NY. 1998

MSE220: NANO MATERIALS AND TECHNOLOGY

Contact Hours: 5/week

Course Outcome: At the end of the course, the students will be able to

CO 1: Explain the fundamentals of nanostructured materials,

CO 2: Synthesize and characterize the nanostructured materials.

CO 3: Prepare polymer nanocomposites for tailor made applications.

CO 4: Solve the problems related to health issues

Course Content:

Unit 1	Nanostructured materials: Introduction, basic of Nanoparticles, Nanowires,	10h
	Nanorods, Nanoplatelets, Nanoclusters, Solid solutions.	
	Classification, synthetic routes for nanoparticles production- super critical fluid	
	based particle production, droplet and aerosol techniques, gas atomization	

	approaches, dendrimers, block copolymers, self-assembly, block copolymer phase	
	diagram, Block copolymer thin films, hyper branched polymers or star polymers,	
	molecular imprint polymers, nano oxides, nanowires, nanotubes and nanofibres,	
	polymer nanofilm, applications of polymeric nanoparticles. Bottom up and top down	
	approaches, nanofabrication.	
Unit 2	Polymer-inorganic nanocomposites: Introduction of nanotechnology and polymer	10h
	nanocomposites, the difference between nanocomposites and traditional filler	
	enhanced polymers, the structure and classification of polymer nanocomposites,	
	different types of nanofillers, One dimensional, Two dimensional and Three	
	dimensional nanostructured materials, nanoclay- introduction, structure, chemistry,	
	and its modification with surfactants, preparative methods and structure of	
	polymer/clay nanocomposites, types of polymers used for polymer/clay	
	nanocomosites preparation, material properties of polymer/clay nanocomposites,	
	melt rheology and processing operations of nanocomposites, characterization of	
	nanocomposites. Nanocomposites of polymers and inorganic particles, synthesis and	
	properties. Major progress over the past one and half decades.	
Unit 3	Carbon nanomaterials: CNTs- Structural aspects, single walled and multi walled	10h
	construction of none types, and an another set of set of the second set of the secon	
	nanoludes, preparation of nano ludes: cardon arc process, catalytic assisted pyrolysis,	
	laser technique, electro chemical method, purification of carbon nano tube, properties	
	laser technique, electro chemical method, purification of carbon nano tube, properties of nano tubes, surface modification of CNTs, application of nanotubes. Graphite	
	laser technique, electro chemical method, purification of carbon nano tube, properties of nano tubes, surface modification of CNTs, application of nanotubes. Graphite nanofibre, Graphene oxide- chemistry, types, preparation and surface modification	
	hanotubes, preparation of nano tubes: carbon arc process, catalytic assisted pyrofysis, laser technique, electro chemical method, purification of carbon nano tube, properties of nano tubes, surface modification of CNTs, application of nanotubes. Graphite nanofibre, Graphene oxide- chemistry, types, preparation and surface modification and properties. Applications of Nanomaterials: Catalysis, Electronic, Aerospace,	
	nanotubes, preparation of nano tubes: carbon arc process, catalytic assisted pyrofysis, laser technique, electro chemical method, purification of carbon nano tube, properties of nano tubes, surface modification of CNTs, application of nanotubes. Graphite nanofibre, Graphene oxide- chemistry, types, preparation and surface modification and properties. Applications of Nanomaterials: Catalysis, Electronic, Aerospace, Automotive, Surface coatings, Magnetic, Optical, Medicine etc.	
Unit 4	nanotubes, preparation of nano tubes: carbon arc process, catalytic assisted pyrofysis, laser technique, electro chemical method, purification of carbon nano tube, properties of nano tubes, surface modification of CNTs, application of nanotubes. Graphite nanofibre, Graphene oxide- chemistry, types, preparation and surface modification and properties. Applications of Nanomaterials: Catalysis, Electronic, Aerospace, Automotive, Surface coatings, Magnetic, Optical, Medicine etc. Nanocomposites of carbon nanotubes: Introduction, carbon nanotube-metal matrix	10h
Unit 4	 nanotubes, preparation of nano tubes: carbon arc process, catalytic assisted pyrofysis, laser technique, electro chemical method, purification of carbon nano tube, properties of nano tubes, surface modification of CNTs, application of nanotubes. Graphite nanofibre, Graphene oxide- chemistry, types, preparation and surface modification and properties. Applications of Nanomaterials: Catalysis, Electronic, Aerospace, Automotive, Surface coatings, Magnetic, Optical, Medicine etc. Nanocomposites of carbon nanotubes: Introduction, carbon nanotube-metal matrix composites, carbon nanotube –ceramic-matrix composites – properties and uses.	10h
Unit 4	nanotubes, preparation of nano tubes: carbon arc process, catalytic assisted pyrofysis, laser technique, electro chemical method, purification of carbon nano tube, properties of nano tubes, surface modification of CNTs, application of nanotubes. Graphite nanofibre, Graphene oxide- chemistry, types, preparation and surface modification and properties. Applications of Nanomaterials: Catalysis, Electronic, Aerospace, Automotive, Surface coatings, Magnetic, Optical, Medicine etc. Nanocomposites of carbon nanotubes: Introduction, carbon nanotube-metal matrix composites, carbon nanotube –ceramic-matrix composites – properties and uses. CNT-polymer-matrix composites – methods of fabrication, characterization, and their	10h
Unit 4	hanotubes, preparation of nano tubes: carbon arc process, catalytic assisted pyrofysis, laser technique, electro chemical method, purification of carbon nano tube, properties of nano tubes, surface modification of CNTs, application of nanotubes. Graphite nanofibre, Graphene oxide- chemistry, types, preparation and surface modification and properties. Applications of Nanomaterials: Catalysis, Electronic, Aerospace, Automotive, Surface coatings, Magnetic, Optical, Medicine etc. Nanocomposites of carbon nanotubes: Introduction, carbon nanotube-metal matrix composites, carbon nanotube –ceramic-matrix composites – properties and uses. CNT-polymer-matrix composites – methods of fabrication, characterization, and their uses. Factors affects on the performances of nanocomposites. Graphene oxide –	10h
Unit 4	 nanotubes, preparation of nano tubes: carbon arc process, catalytic assisted pyrofysis, laser technique, electro chemical method, purification of carbon nano tube, properties of nano tubes, surface modification of CNTs, application of nanotubes. Graphite nanofibre, Graphene oxide- chemistry, types, preparation and surface modification and properties. Applications of Nanomaterials: Catalysis, Electronic, Aerospace, Automotive, Surface coatings, Magnetic, Optical, Medicine etc. Nanocomposites of carbon nanotubes: Introduction, carbon nanotube-metal matrix composites, carbon nanotube –ceramic-matrix composites – properties and uses. CNT-polymer-matrix composites – methods of fabrication, characterization, and their uses. Factors affects on the performances of nanocomposites. Graphene oxide – polymer composites - fabrication, characterization and their uses.	10h
Unit 4	 nanotubes, preparation of nano tubes: carbon arc process, catalytic assisted pyrolysis, laser technique, electro chemical method, purification of carbon nano tube, properties of nano tubes, surface modification of CNTs, application of nanotubes. Graphite nanofibre, Graphene oxide- chemistry, types, preparation and surface modification and properties. Applications of Nanomaterials: Catalysis, Electronic, Aerospace, Automotive, Surface coatings, Magnetic, Optical, Medicine etc. Nanocomposites of carbon nanotubes: Introduction, carbon nanotube-metal matrix composites, carbon nanotube –ceramic-matrix composites – properties and uses. CNT-polymer-matrix composites – methods of fabrication, characterization, and their uses. Factors affects on the performances of nanocomposites. Graphene oxide – polymer composites - fabrication, characterization and their uses. Conducting polymeric nanomaterials: Introduction to conducting polymers,	10h

	methods of synthesis of polymeric nanomaterials, structure-property relationship,	
	polymeric nanomaterials for electrical and electronic applications.	
Unit 5	Application of Nanotechnology: Nanotechnology for waste reduction and	10h
	improved energy efficiency, nanotechnology based water treatment strategies.	
	Nanoporous polymers and their applications in water purification, Nanotoxicology.	
	Use of nanoparticles for environmental remediation and water treatment. Case studies	
	and Regulatory needs.	
	Polymeric nanoparticles for drug and gene delivery: Introduction, transport	
	phenomenon and mechanism, features of polymeric materials, preparation and	
	characterization of nanoparticles, recent developments in nanoparticles technology,	
	nanoparticles for drug and gene delivery applications.	
Refere	ences:	
1.	H.S.Nalwa (ed). Encyclopedia of nanoscience and nanotechnology, American Scientific	
	Publisher, USA, Vols- 1-10, 2004.	
2.	Tapas Kuilla, Sambu Bhadra Dahu Yao, Nam Hoon Kim, Saswata Bose, Joong Hee	
	Lee, Recent advances in graphene based polymer composites - Progress in Polymer	
	Science, 35(2010) 1350-1375.	
3.	Editors: S. Thomas, G.E. Zaikov and S.V. Valsaraj, Recent advances in polymer	
	nanocomposites, Leiden, Boston, 2009.	
4.	Editors: S.Thomas, G.E.Zaikov, Progress in Polymers Nanocomposites Research , Nova	
	publishers, USA, 2008. web site address: novapublishers.com	
5.	Y.C.Ke, P.Stroeve, F.S.Wang, Polymer layered silicate and silica nano composites,	
	Elsevier, 2005.	
6.	B.K.G. Theng. Formation and properties of clay-polymer complexes. 2 nd ed., Elsevier,	
	Amsterdam, 2012.	
7.	B.K.G. Theng, Chemistry of clay-organic reactions, Adam Hilger, London, 1974.	
8.	V.Chirala, G.Marginean, W.Brandl and T.Iclanzan, Vapour grown carbon nanofibres-	
	polypropylene composites and their properties in carbon nanotubes, edited by V.N.	
	Popov and P.Lambin, p.227, Springer, Netherlands, 2006.	
<u>. </u>	****	1

MSE230: MATERIAL PROCESSING TECHNOLOGY (5:0:0) Course Outcomes: Upon successful completion of this course, the students will be able to-**CO1:** Explain the different metal processing techniques. **CO2:** Explain polymer processing techniques and derive polymer melt constitutive equations from first principle **CO3:** Explain mix quality and the mixing mechanism. **CO4:** Explain the design and control the process steps/parameters of reactive processing. **CO5:** Explain mold filling, simulation and reaction injection moulding **Course Content:** 10h Unit 1 **Introduction to processing** Principles of Metal fabrication Processes: Smelting and refining of metal ores and scrap, casting molten metals into a given shape (foundry), hammering or pressing metals into the shape of a die (hot or cold forging), welding and cutting sheet metal, sintering and shaping metals on a lathe. Techniques are used to finish metals: Grinding and polishing, abrasive blasting and many surface finishing and coating techniques (electroplating, galvanizing, heat treatment, anodizing, powder coating. Metal reclamation. Unit 2 **Principles of polymer fabrication:** Current polymer processing practice, analysis 10h of polymer processing in terms of elementary steps and shaping methods. polymer processing techniques- principle, design, typical applications and case studies of extrusion, injection molding, blow moulding thermoforming, compression and transfer moulding process. The balance equations and Newtonian fluid mechanics. Non-Newtonian Fluid mechanics, polymer melt constitutive equations. Numerical. Unit 3 Single screw extrusion: General features, Mechanism of flow, Analysis of flow in 10h extruder and extruder volumetric efficiency. General features of twin screw extruders Mixing: Introduction, distributive and dispersive mixing, mix quality evaluation, residence time and strain distributions. Mixing equipments, mixing elements, mixing mechanisms, motionless mixers, mixing in a stirred tank and practical aspects of mixing

Unit 4	Reactive Polymer processing and compounding: Classes of polymer chain	10h
	modification reactions carried out in reactive polymer processing equipment.	
	strategy of reactive extrusion. Reactor classifications, reactive compatibilization.	
	grafting techniques functionalization of end groups compatibilization by	
	additives Polymer compounding	
Unit 5	Injection molding: Introduction feed system hot and cold runners balanced	10h
om s	runner system flow in an idealized runner system theoretical aspects of mold	1011
	filling and simulation molding window diagram practical aspects of injection	
	milding applications and trouble shooting	
	Beastion Injection Moulding: Dringing energion advantages applications	
	This film making technology	
De	Thin thin making technology	
Keiere	nces:	
1.	Zehev Tadmor and Costa G. Gogos, Principles of polymer processing, 2 nd edition,	Jhon
	wiley and sons Inc. Publication, New Jersey, 2006.	
2.	Beddoes and M. Bibby, Principles of Metal Manufacturing Processes, Butterw	orth-
	Heinemann, 2003.	
3.	Donald G. Baird and Dimitris I. Collias, Polymer processing, principles and design,	John
	Wiley and Sons Inc, NY, 2001.	
4.	J K Fink. Reactive polymers fundamentals and applications- A concise guide to indu	strial
	polymers ,William Andrew Publishing, Newyork, USA, 2005.	
5.	Stanley Middleman, Fundamentals of polymer processing. McGraw-Hill Inc. USA, 19	977.
6.	Manas- Zloczower and Z Tadmor, Mixing and Compounding-Theory and Practice.	Carl
	Hanser Verlag, 1994.	
7.	Crawford R.J., Plastics Engineering, Pergamon Press, 2 nd Edition, 1987.	
8.	Billmeyer, Text Book of Polymer Science, John Wiley and Sons (Asia) Pvt. Ltd., 1994	4.
9.	Charles A Harper, Handbook of Plastic Processes, Jhon wiley and sons Inc. Publica	ation,
	Newjersey, 2006	

MSE241: SMART MATERIALS (5-0-0)		
Course Outcomes: Upon successful completion of this course, the students will be able to-		
CO1:	Explain physical principles underlying the behavior of smart materials.	
CO2:	Explain fundamentals of nanomaterials and their role	
CO3:	Explain physical principles underlying the behavior of electro-active organic compound	nds
CO4:	Explain nanofabrication and plastic electronics	
CO5:	Explain engineering design, principle and production of smart materials for diff	erent
	applications	
Course	e Content:	
Unit 1	Introduction to materials- Classes of materials – Smart/intelligent materials –	10h
	Overview of Smart Materials, Functional materials - Diverse areas of intelligent	
	materials - primitive functions of intelligent materials - Examples of intelligent	
	materials - Materials responsive to thermal, electrical, magnetic, optic, stress	
	fields, Biocompatible materials and bio-Mimitics (stimuli-responsive materials).	
	Principles of Piezoelectricty, Piezoelectric Materials, Principles of	
	Magnetostriction, Introduction to Electro-active Materials, Ionic Polymer Matrix	
	Composite (IPMC), Shape Memory materials.	
Unit 2	Fabrication and Applications of smart materials: Overview of the materials	10h
	synthesis techniques. Established Deposition Methods - Spin-Coating; Physical	
	Vapour Deposition; Chemical Vapour Deposition; Electrochemical Methods, Sol-	
	Gel Processing Molecular Architectures - Langmuir-Blodgett Technique;	
	Chemical Self-Assembly; Electrostatic Layer-by-Layer Deposition. Importance	
	of the relationship between the microstructure on nanoscale and the functional	
	properties.	
	Smart composites, Self-healing materials, Self-cleaning materials, Thin Film	
	Processing and Device Fabrication.	
Unit 3	Electroactive Organic Compounds - Acids and Bases; Ions; Solvents; Functional	10h
	Groups; Aromatic Compounds; Conductive Polymers; Buckyballs and	
	Nanotubes; Fullerenes; Carbon Nanotubes, Optical and electrical properties of	

	nano tubes and nano wires – quantum wires and quantum dots. Basic Principles	
	and Compounds - Organic Piezoelectric, Pyroelectric and Ferroelectric	
Unit	4 Nanofabrication – Photolithography; Soft Lithography Techniques; Scanning	10h
	Probe Manipulation; Dip-Pen Nanolithography; Miniature designs, microfluidic	
	devices, switchable surfaces.	
	Plastic Electronics - Introduction; Organic Diodes - Schottky Diode; Ohmic	
	Contacts.	
	Metal-Insulator-Semiconductor Structures - Idealized MIS Devices; Organic MIS	
	Structures.	
Unit	5 Organic Light-Emitting Displays - Device Efficiency; Methods of Efficiency	10h
	Improvement; Full-Colour Displays; Electronic Paper	
	Photovoltaic Cells - Organic Semiconductor Solar Cell, Dye-Sensitized Solar Cell;	
	Luminescent Concentrator.	
	Chemical Sensors and Actuators - Sensing Systems; Chemical Sensors-	
	Calorimetric Gas Sensors, Electrochemical Cells; Gas Sensors; Acoustic Devices;	
	Optical Sensors.	
	Physical Sensors and Actuators - Touch Sensors; Polymer Actuators; Lab-on-a-	
	Chip; Smart Textiles and Clothing.	
Refe	rences:	
1.	V. Mukesh and B.S. Thompson, Smart materials and structures, Chapman and Hall, Lor	ndon,
	1992.	
2.	M.V. Gandhi, B.D. Thompson, Smart Materials and Structures Springer Science	and
	Business Media, 1992,	
3.	T.W.Duerig, K.N.Melton, D.Stockel and C.M.Wayman, Engineering aspects of s	shape
	memory Alloys, Butterworth-Heinemann, 1990	
4.	Sorab K. Gandhi, Fabrication Principles of VLSI, John Wiley, 1996	
5.	Charles P.Poole and F.J. Owens, Introduction to nano technology, Wiley Interscience, 20	003.
6.	T. Chatterji, Colossal magneto resistive manganites, Kluwer Academic Publishers, 2004	
7.	Malcolm E.Lines and Alastair M.Glass, Principles and applications of Ferroelectrics	s and
	Related materials, Oxford University Press, 2001.	

MSE242: BIOMATERIALS (5:0:0)

Contact Hours: 5/week

Course outcomes: Upon successful completion of this course, the students will be able to

CO1: Define the basic terms and explain the structure and properties of metals commonly used for making biomedical implants and devices.

CO2: Explain the classification, properties, manufacturing techniques and applications of bioceramics.

- **CO3:** Explain different types, properties, manufacturing techniques and applications of polymeric biomaterials.
- **CO4:** Explain different surface modification techniques commonly used to engineer biomaterial surfaces and types and importance of sterilization methods.

CO5: Explain the applications of biomaterials.

Course Content

-		
Unit 1	Introduction: Terminologies (Biomaterials, biocompatibility, biomedical devices,	10h
	Implant, Prosthesis, Artificial organ, Hybrid artificial organ, Bioprosthesis, Graft,	
	Tissue engineering, regenerative medicine, nanomedicine), History of biomaterials,	
	Classification of biomaterials, typical requirements of biomaterials, applications of	
	biomaterials, Regulatory bodies: Food and Drug Administration (FDA), Center for	
	Drug Evaluation and Research (CDER), Center for Devices and Radiological Health	
	(CDRH); Center for Biologics Evaluation and Research (CBER).	
	Metallic Biomaterials: Classification, structure – properties and applications of:	
	Titanium and its alloys, Stainless steel, Cobalt-chromium alloys, Nitinol, Tantalum,	
	Magnesium, Shape-memory alloys, Corrosion of metallic implants, manufacturing of	
	metallic implants.	
Unit 2	Bioceramics: Nearly bioinert oxide-based ceramics (Alumina, Zirconia and Carbons	10h
	(low-temperature isotropic (LTI) and the ultralow-temperature isotropic (ULTI)	
	pyrolytic carbons), Bioactive ceramics (Bioactive glass, glass-ceramics, hydroxyl	
	apatite), Biodegradable/Resorbable ceramics (Calcium phosphates, Hydroxyapatite,	
	Tricalcium phosphate), Glass-ionomers, Nanoceramics, characteristics and	
	manufacturing techniques.	
Unit 3	Polymeric and composite biomaterials: Classification, structure – properties and	10h

	applications of; Polyvinylchloride, Polyethylene, Polypropylene, Polymethyl	
	methacrylate, PS and its copolymers, Polyesters, Polyamides (Nylons), Fluorocarbon	
	polymers, Silicone rubber, Polyurethanes, Polyacetal, Polysulfone, and Polycarbonate,	
	Thermoplsatic elastomers, Natural polymers, Biodegradable Polymers, Shape-	
	memory polymers, Conducting polymers, Hydrogels, FRPs	
Unit 4	Surface modification and sterilization: Need for surface modification and	10h
	sterilization, Principle, merits and demerits of surface modification techniques	
	(Abrasive blasting, Plasma glow discharge treatments, Thermal spraying, Physical and	
	chemical vapor deposition, Grafting, Self-assembled monolayer, Layer-by-layer	
	assembly. Sterilization techniques; Steam sterilization, Ethylene oxide sterilization,	
	Gamma radiation sterilization, Dry heat sterilization, Electron beam sterilization,	
	Recently developed methods such as Low temperature gas plasma treatment, Gaseous	
	chlorine dioxide treatment	
Unit 5	Applications of biomaterials: Cardiovascular medical devices (stents, grafts and	10h
	etc.), Orthopedic and dental applications (implants, tissue engineered scaffolds and	
	etc.), Ophthalmologic applications (contact lenses, retinal prostheses and etc.),	
	Bioelectrodes, Bioinformatics and Biosensors, Burn dressings and skin substitutes,	
	Sutures, Drug delivery systems.	
Referen	ices:	
1. 1	Véronique Migonney (Ed.), Biomaterials, John Wiley and Sons, Inc., USA, 2014.	
2. 0	C. Mauli Agrawal, Joo L. Ong, Mark R. Appleford and Gopinath	
I	introduction to Biomaterials; Basic theory with engineering applications, Cambridge	
υ	university press, UK, 2014.	
3. J	yoce Y. Wong and Joseph D Bronzino, Biomaterials, CRC press, New York, 2007.	
4. J	loyce Y. Wong, Joseph D. Bronzino and Donald R. Peterson, Biomaterials principles	
8	and practices, CRC press, New York, 2013.	
5. I	Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen and Jack E. Lemons,	
I	Biomaterials Science; An Introduction to Materials in Medicine (3 rd edition), Academic	
H	Press, UK, 2014.	
6. I	Hamid Reza Rezaie, Leila Bakhtiari and Andreas Öchsne, Biomaterials and Their	

Applications, Springer International Publishing AG, Switzerland, 2015.

MSE243: FINITE ELEMENT METHODS AND APPLICATIONS		
Contact	Hours: 5/week	
Course	Content:	
Unit 1	Recap of Mathematical Concepts	10h
	Introduction to Fundamentals of Elasticity	
	Introduction to Fundamentals of Plasticity	
	Introduction to FEM or FEA, MATLAB Program for Tapered Cylinder Problem: (i)	
	Without the idea of assembly, only discretization (ii) With the idea of assembly,	
	Formulation of problem using FEM - Discrete Body	
	Truss Problem (i) Main MATLAB File, (ii) Stiffness function, (iii) Stress and strain	
	function	
Unit 2	Formulation of problems using FEM - Continuous Body	10h
	MATLAB Program for 1-D General ODE Problem with 2-node Elements: Example	
	problem: General 2nd order homogeneous ODE, MATLAB Program for 1-D Heat	
	Transfer Problem with 2-node Elements (i) Constant Cross Section Bimetallic rod	
	with 2-node elements; MATLAB Program for 1-D Heat Transfer Problem with 2-	
	node Elements (ii) Tapered Cross Section Bimetallic rod with 2-node	
	elements Formulations of Interpolation Function for Generic Finite Elements	
Unit 3	Application of FEM in Heat Transfer	10h
	MATLAB Program for 1-D Heat Transfer Problem with 3-node Elements	
	(1) Bimetallic rod with 3-node elements; MATLAB Program for 1-D Heat Transfer	
	Problem with 3-node Elements	
	(2) Tapered Cross Section Bimetallic rod with 3-node elements; MATLAB Program	
	for 2-D Heat Transfer Problem with 4-node Elements: A Square Leaf with Convection	
	Boundary Condition with 4-node elements	
	MATLAB Program for 1-D Transient Heat Transfer Problem with 2-node	
	Elements: FEM file	
	MATLAB Program for 1-D Transient Heat Transfer Problem using Finite Difference	

	Method: FDM file	
Unit 4	Application of FEM in Solid Mechanics	10h
	Error Estimation and Convergence	
	ANSYS Tutorials	
	Tutorial 01: Introduction to ANSYS and a Truss/Bridge Problem	
	Tutorial 02: Bar and Beam Problems Using ANSYS	
	Tutorial 03: Effect of Plasticity Using ANSYS	
	Tutorial 04: Elastic and Elasto-Plastic Fracture Mechanics Using ANSYS	
Unit 5	Tutorial 05: Heat Transfer 2-D, 3-D and Transient Problems Using ANSYS	10h
	Tutorial 06a: 2-D Contact Problems Using ANSYS	
	Tutorial 06b: A 2-D Transient Indentation Problem	
	Tutorial 6b: Movies (play using windows media player) animating: (i) Displacement	
	in Z-direction and (ii) von Mises Stress near indentation zone	
	Tutorial 07: Fatigue Analysis with ANSYS	
	Tutorial 08: Explicit Dynamics using ANSYS	
Referen	ice:	1
I		

1. Seshu P., Text book of Finite element analysis, Prentice Hall India Learning Pvt. Ltd., 2003

MSE244: PROJECT ENGINEERING AND MANAGEMENT (5-0-0)		
Contact Hours: 5/week		
Course	Content:	
Unit 1	Project Planning and Phases: Need and importance, phases of capital budgeting,	10h
	project Analysis facts, resource allocation framework (investment strategies, portfolio	
	planning tools, and interface between strategic planning and capital budgeting),	
	Generation and Screening of Project Ideas	
Unit 2	Generation of ideas, monitoring, scouting for project ideas, preliminary screening,	10h
	project rating index, sources of net present value. Market and demand analysis,	
	technical analysis, financial estimates and projections.	
Unit 3	Time value of money, investment criteria, project cash flows, cost of capital, project	10h
	risk analysis, numerical.	

Unit 4	Project rate of return, social cost benefit analysis, financing of projects, venture and	10h
	private capital	
Unit 5	Implementation: project management, network techniques for project management	10h
References:		
1. Pro	1. Project Planning, Analysis, Selection, Implementation and Review", seventh edition, Prasanna	
Ch	andra. New Delhi, Tata McGraw Hill Publications, 2009.	

- 2. P. Gopalkrishnan and E. Rama Moorthy. "Text book of Project Management". New Delhi, McGraw Hill Publications, 2000
- 3. Harold Kerzner, "Project Management: A Systems Approach to Planning, Scheduling and Controlling", New Delhi, CBS Publications, 1994.
- **4.** Rajive Anand, "Project Profiles with Model Franchise Agency and Joint Venture Agreement", New Delhi, Bharat Publications.

MSE245: HEAT TRANSFER IN MATERIAL ENGINEERING (5-0-0)		
Contact	Hours: 5/week	
Course	Content:	
Unit 1	Review of Fourier's Law - Thermal Conductivity of gases, solids, liquids and bulk	10h
	materials – Numerical Problems.	
	Heat Transfer and Energy Equation – Heat transfer with forced convection in a tube,	
	Heat transfer with laminar forced convection over a flat plane, Heat transfer with	
	natural convection, Heat conduction - Numerical Problems	
Unit 2	Correlations and Data for Heat Transfer Coefficients, Heat Transfer Coefficients for	10h
	forced convection in tubes, Dimensional analysis, Correlation for forced convection in	
	tubes and past submerged objects - Numerical Problems.	
Unit 3	Heat Transfer Coefficients for natural convection Quenching Heat Transfer	10h
	Coefficients, Heat Transfer Coefficients in fluidized beds, packed beds, forging -	
	Numerical Problems.	
Unit 4	Conduction of Heat in Solids – The energy equation for conduction, Steady-state one-	10h
	dimensional systems, Transient systems, finite dimensions, Transient conditions,	
	infinite and semi-infinite solids, Simple multidimensional problems, Moving sources -	

	Numerical Problems.	
Unit 5	Solidification of Metals - Solidification in sand molds, Solidification in metal molds,	10h
	Continuous casting, Crystal growth - Numerical Problems.	

Reference

1. D R Poirer and G H Geiger, Transport phenomena in materials processing, The minerals, metals and materials Society, Pennsylvania, 1994.

MSE251: NON-DESTRUCTIVE TESTING (5-0-0)

Course Outcomes: Upon successful completion of this course, the students will be able to-

CO1: Explain visual and liquid penetrants methods

CO2: Explain Ultra sonic testing methods

CO3: Explain Radiography testing methods

CO4: Explain Eddy current testing and Thermography methods

CO5: Explain Magnetic particle testing methods

Unit 1	Visual Inspection- tools, applications and limitations.	10h
	Liquid Penetrant Inspection -principles, types and properties of penetrants and developers. Advantages and limitations of various methods of LPI.	
Unit 2	Ultra sonic testing(UT) - Nature of sound waves, wave propagation - modes of sound wave generation - Various methods of ultrasonic wave generation, types of UT Principles, applications, advantages, limitations, A, B and C scan - Time of Flight Diffraction (TOFD)	10h
Unit 3	Radiography testing (RT) – Principles, applications, advantages and limitations of RT. Types and characteristics of X ray and gamma radiation sources, Principles and applications of Fluoroscopy/Real-time radioscopy - advantages and limitations - recent advances.	10h
Unit 4	 Eddy current testing - Principles, types, applications, advantages and limitations of eddy current testing. Thermography - Principles, types, applications, advantages and limitations. Optical 	10h

	and Acoustical holography- Principles, types, applications, advantages and limitations.	
Unit 5	Magnetic particle testing - principles, magnets and magnetic field, discontinuity and	10h
	defects, circular and longitudinal fields, induces magnetic fields, selection of	
	magnetizing methods, MT improvements, remote magnetic particle inspection,	
	applications, advantages and limitations, magnetic rubber inspection and under water	
	MRI.	

References:

- 1. Paul E. Mix, Introduction to Nondestructive Testing: A Training Guide, 2nd edition, John Wiley and Sons, 2005
- 2. Baldev Raj, T. Jayakumar, M. Thavasimuthu, Practical Non Destructive Testing, Woodhead Publishing, 2002
- 3. B. Hull and V. John, Non-Destructive Testing, Macmillan, 1988
- **4.** Krautkramer, Josef and Hebert Krautkramer, Ultrasonic Testing of Materials, 3rd Edition, New York, Springer-Verlag, 1983.

MSE252: RENEWABLE AND SUSTAINABLE MATERIALS (5:0:0)		
Contact Hours: 5/week		
Course	Content	
Unit 1	Chemicals/Monomers from renewable resources or Green Chemistry: (Sources,	10h
	synthesis, properties and applications of): Glucose, xylose, arabinose, Furfural,	
	Lactic Acid, Gluconic Acid, Furans, Xylitol, Sorbitol, Mannitol, Terpenes, Oligomers	
	such as rosins, tannins, vegetable oils, Surfactants, Triglycerides, Levulinic Acid,	
	Levoglucosan, Hydroxyacetaldehyde	
Unit 2	Fibers from renewable resources: (Sources, synthesis, properties and applications	10h
	of): Nratural fibers (Cellulosic fibres; Cotton, viscose, acetate, triacetate, flax, linen,	
	hemp, jute, sisal, abaca, cabuya, Coconut Fibres and henequen. Protein fibers; Silk,	
	Wool, Synthetic fibers from biorenewable resources	
Unit 3	Fuels from renewable resources / Green fuels: (Sources, synthesis, properties and	10h
	applications of): First generation, second generation and third generation biofuels.	
	Bioethanol (From sugar, starch cellulose and algae), Biodiesel (from Trans-	

	esterefication, Hydrotreated Vegetable Oil, Gasification + Fischer-Tropsch,		
	Microalgae) and Biogas (biomethane, biohydrogen)		
Unit 4	Polymers from renewable resources: (Sources, synthesis, properties and	10h	
	applications): Polymers from biomass/Natural Polymers: Proteins; (Gelatin/		
	Collagen, Casein, Whey, Albumin). Polysaccharides (Starch, Cellulose, Lignin,		
	Carboxymethylcellulose, Chitosan hyaluronic acid, Alginate, Soy), Natural rubber,		
	Gauyle rubber, Polymers from vegetable oils/lipids, Polymers from microorganisms		
	(Polylactic acid, Polyhydroxybutyrate (microbial polyester), Polyhydroxyvalerate) and		
	Nucleic acid polymers.		
Unit 5	Green composites for advanced applications	10h	
Refere	nces:		
1.	Mohamed Naceur Belgacem and Alessandro Gandini (Edrs), Monomers, Polymers	and	
	Composites from Renewable Resources, Elsevier, UK, 2008.		
2.	James h. Clark and Fabien e. I. Deswarte (Edr), Introduction to Chemicals from Biomas	ss, A	
	John Wiley and Sons, Ltd, Publication, UK, 2008.		
3.	Ashok Pandey, Christian Larroche, Steven C Ricke, Claude-Gilles Dussap and Ed	lgard	
	Gnansounou, Biofuels; Alternative Feedstocks and Conversion Processes, Academic F	Press,	
	USA, 2011.		
4.	Joseph J. Bozell, Chemicals and Materials from Renewable Resources, American Cher	nical	
	Society, Washington, DC, 2001.		
5.	Ryszard M. Kozłowski (Edr.), Handbook of Natural Fibres, Volume 2: Processing	and	
	Applications, Woodhead Publishing Limited, New Delhi, 2012.		
L	****		

MSE 254: PACKAGING MATERIALS (5-0-0)			
Contact Hours: 5/week			
Course Content:			
Unit 1	Introduction to packaging, Definition, roles and functions of packaging,	10h	
	Classification of packaging: Primary, secondary and tertiary packaging, Packaging		
	design, Protection against handling, transportation and storage hazards, Packaging		
	supply chain, Labeling, coding and marking, Packaging aesthetics and graphic		

	design, Packaging legislation.	
Unit 2	Packaging materials and their properties: Glass, Paper and paperboard, Types of	10h
	Glass, Corrugated fiber board (CFB), Metal containers: Tin Plate and Aluminum,	
	plastics, Composite containers, Collapsible tubes, Mono and multi layer plastic	
	Films, Laminated films, Metalized films, Principles for choice of packaging	
	materials, Testing of packaging material.	
Unit 3	Manufacturing process of packaging materials, Mechanical operations for the	10h
	manufacturing of paper and paperboard, Production of packaging from papers and	
	boards, Production of paper based semi rigid packaging, Corrugated containers -	
	classifications, components, flutes and stages in preparation in corrugated boards,	
	Glass Manufacturing techniques, Metal based packaging, Can manufacturing,	
	Aluminium foil containing packaging, Film casting and extrusion of plastic films,	
	Blow moulding for bottles, Packaging closures. Packaging from combined	
	materials.	
Unit 4	Advanced Packaging Technologies: Electrostatic discharge (ESD) protective	10h
	packaging, Modified and controlled atmosphere packaging, Smart, Active and	
	Intelligent Packaging, cold chain packaging technology, Gas flush and vacuum	
	packaging, Skin packaging, Shrink films, Vacuum packaging, Time-temperature	
	indicators, RFID tags, Bar Codes, Nanotechnology in packaging.	
Unit 5	Packaging Laws and regulations, Safety aspects of packaging materials, migration	10h
	of additives into food materials; Packaging material residues in food products,	
	Environmental issues, recycling and waste disposal of packaging, biodegradable and	
	biopolymers for packaging.	
Reference	es:	
1. F	ood packaging technology, Editors: Coles, McDowell and Kirwan, Vol. 5. CRC Press,	2003,
IS	SBN 1841272213	
2. F	undamentals of Packaging Technology, Editors: Natarajan S, Govindarajan M, Kur	nar B.
Р	HI Learning Pvt. Ltd.; 2014, ISBN 9788120350540.	
3. P	ackaging Technology, Fundamentals, Materials and Processes, Editors: Anne and	Henry
E	mblem, , Woodhead Publishing, 2012, ISBN: 9781845696658	

- 4. Handbook of Package Engineering. Third Edition. Editors: Hanlon, Kelsey and Forcinio, CRC Press, USA, 1998, ISBN 9781498731935.
- 5. Materials for advanced packaging, Editors: Lu and Wong, Vol. 181, Springer, New York, 2009, ISBN: 978-0-387-78218-8.
- Food Packaging: Principles and Practice, Third Edition. Editor: Gordon L. Robertson, CRC Press, 2012, ISBN 9781439862414

MSE254: FIBER TECHNOLOGY

Contact Hours: 5/week

Course Outcomes: Upon successful completion of this course, the students will be able to-

- CO1: Explain the production, properties and applications of natural and synthetic fibers.
- CO2: Describe the requirements and characterization of fiber forming polymers.
- CO3: Select suitable spinning techniques and modification methods
- CO4: Discuss the applications of fibers.

CO5: Explain recent developments in the advanced fiber technology

Course	Content:	
Unit 1	Introduction: Definition of fibers and various textile terms, Production, chemical	10h
	composition, properties and applications.	
	Synthetic fibers: Rayon, cellulose acetate, nylon 6, nylon 66, polyesters, acrylics,	
	spandex fibers, high performance fibers - aramid, carbon, flame resistant fibers.	
	Natural fibers: cotton, coir, flax, wool, silk, asbestos and glass.	
Unit 2	Requirements and characterization Fiber forming polymers	10h
	Crystallinity and orientation. X-ray diffraction measurement of Crystallinity.	
	orientation, crystal size, small angle X-ray scattering. Measurement of density of	
	fibres, Infrared spectroscopy for determination of orientation, Crystallinity, etc.	
	Optical microscopy for measurement of birefringence. Internal and surface structure	
	by electron microscopy. Thermal methods DSC, TGA and TMA for structural	
	investigation.	
Unit 3	Production and Testing of fibers: Principle, technology, advantages and	10h
	disadvantages of the following techniques; Melt spinning, Dry spinning, wet spinning	

	process, Electro spinning techniques. processing, dyeing and finishing of man-made		
	fibers, Fiber – matrix adhesion, improvement of bonding – bonding agents / coupling		
	agents, modification of fibers like bleaching, grafting, chemical treatments. Principles		
	of finishing and dyeing of man-made fibers. identification, analysis and testing of		
	fibers.		
Unit 4	Application of fibres: Textiles: Protective clothing, Design principles and evaluation	10h	
	of protective clothing. Medical Textiles, Sportswear, Stimuli sensitive intelligent		
	textiles, Agriculture, biomedical applications.		
Unit 5	Advanced fiber technology: Bi- and multi-component fibers, hollow fibers, hard	10h	
	elastic fibers, geotextile fibers and structural applications .Recent developments in		
	fiber technology		
Refere	nces:		
1.	Kostikov, V. I. Fibre science and technology; Chapman and Hall: London, 1995.		
2.	2. R.W.Moncrieff, Man made fibres, Newnes-Butterworths, London 1975		
3. Jasper Graham-Jones, John Summer scales, Marine Applications of Advanced Fibre-reinforced			
	Composites, Woodhead Publishing, 2015.		
4.	V.K. Kothari, Manufactured Fibre Technology, Springer Science and Business Media, 20	12	
5.	L.C. Hollaway, Advanced fibre-reinforced polymer composites for structural applica	tions,	
	Elsevier Inc. Chapters, 2013		
6.	Mark, H. F., Atlas, S. M., Man-made fibers; Science and Technology, Interscience Public	shers:	
	New York, 1967.		
7.	S.P Mishra, A text book of Fiber Science and Technology, New age International Publi	shers,	
	New Delhi, 2005.		
8.	Dorothy Lyle, Modern Textiles, 2 nd edition Macmillan Publishing Co., 1982		
9.	Bernard P Corbman., Textiles: Fiber to Fabric- McGraw-Hill, New York 1999.		

MSE255: ADVANCED RUBBER TECHNOLOGY (5:0:0)			
Conta	ct Hours: 5/week		

Course Outcomes: Upon successful completion of this course, the students will be able to-

CO1: Explain the additives, processing and characterization of rubber compound

·		
CO2: Design/develop rubber compounds to meet specific criteria.		
CO3: E	xplain and interpret the effect of mixing process parameters.	
CO4: E	xplain different vulcanization techniques	
CO5: C	haracterize, analyze and interpret the results of rubber compound testing	
Course	Content:	
Unit 1	Mechanistic understanding of rubber processing (chemistry behind each process).	10h
	Mechanism of curing (for different types of curing). Function of different rubber	
	additives. Characterization of rubber compound – methods most prevalent in industry.	
Unit 2	Compounding and Compounding Ingredients: Overview of the science of	10h
	compounding, Review of the properties and applications of natural and synthetic	
	rubbers, Major classes of additives i.e., fillers, oils, plasticizers, processing aids, anti-	
	degradents, and curative systems, Examples of how compounds are designed to meet	
	the requirements of various end applications will be given.	
	Compounding and Mixing for Specific Applications: Mixing procedures for specific	
	compounds, illustrating the variations that follow from the nature of the ingredients,	
	Application and the equipment available, Relationship between compounding and	
	successful mixing is emphasized.	
	Compounding and Mixing of Tire Compounds: An outline of the various tire	
	components, required properties in the finished tire, Resultant compositions and	
	mixing procedures.	
	The Effect of Various Compounding Ingredients on Processing Behavior of the	
	Rubber Compound: The effect of various elastomers, fillers, plasticizers and process	
	aids.	
Unit 3	The Mixing Process: An account of the mixing process from raw material acceptance	10h
	to packaging of the mixed compound, raw material specification and testing, weighing	
	and feeding of ingredients, the mixing process (incorporation, distribution, and	
	dispersion), flow behavior in mixers, modeling the mixing process, process variables	
	(e.g. temperature control, basic mixing procedures, natural rubber mastication, and	
	dump criteria), operating variables (e.g. rotor speed, ram pressure, chamber loading),	
	control of the mixing process, discharge, shaping and cooling.	
1		1

		Mixing Cycles and Procedures: Cost of internal mixing, Unit operations in mixing,	
		Single-pass versus multiple-pass mixing, Types of mix cycle, Mill mixing.	
		Rubber Mixing Equipment: Basic mixer design, Review of developments in rotor	
		design.	
		Continuous Mixing of Rubber: An outline of developments in extruder mixing.	
	Unit 4	Vulcanization: Equipment, Compounding, Desired flow properties and cure rates, for	10h
		the batch processes of molding and autoclave vulcanization, for continuous	
		vulcanization of hose, profiles, wire coverings and calendared products.	
	Unit 5	Physical Testing of Rubber: Tensile, Hardness, Thermal, Dynamic mechanical,	10h
		Electrical testing of vulcanizates, Tests for dispersion and contamination, Tests to	
		identify surface exudation.	
		Processibility Testing of Rubber Compounds: Review the tests and testing equipment	
		used to assess the processibility of mixed compounds i.e. the Mooney test, capillary	
		rheometer, torque rheometer, oscillating disc cure meters, rotor less cure meters,	
		dynamic mechanical rheological testers (especially the RPA 2000), and stress	
		relaxation instruments, Correlation (or its lack) between ODR and MDR Cure Times	
		will be discussed, IISRP, Comparative Evaluation of Processibility Tests, 'Which is	
		the Best Processibility Tester?' will be addressed.	
	Refere	nces:	
	1.	Rodgers, B. Rubber compounding: chemistry and applications; Marcel Dekker: New 2004	York,
	2.	Gent, A. N. Engineering with rubber how to design rubber components; 2 nd ed.; He	anser;
		Munich, 2001.	
	3.	Morton, M., Rubber technology, 2d ed.; Van Nostrand Reinhold: New York, 1973.	
	4.	Freakley, P. K., Rubber processing and production organization; Plenum Press: New	York,
		1985.	
	5.	Brydson, J. A., Rubbery materials and their compounds; Elsevier Applied Science, Lo	ndon,
		1988.	
	6.	Barlow, F. W., Rubber compounding: principles, materials, and techniques; M. Dekker:	New
		York, 1988.	
1			

- 7. J.E. Mark and Erman.F.R. Eirich, Science and Technology of Rubber, Elsevier Academic Press, UK, Third Edition, 2005.
- 8. N.R. Legge, G.Holden and H.E. Schroeder, Thermoplastic elastomers, 2nd edition, Hanser Verlag, Munich, 1996.
- 9. Blow, C. M.; Hepburn, C. Rubber technology and manufacture; 2nd ed.; Butterworth Scientific: London, 1982.
- **10.** Alliger, G. and Sjothun, I.J., Vulcanization of elastomers: Principles and practice of vulcanization of commercial rubbers; Reinhold Pub. Corp.: New York, 1964.

MSE26L: POLYMER PROCESSING AND TESTING LAB

Course Outcomes: Upon successful completion of this course, the students will be able to-

- CO1: Explain the experimental procedures and optimize the cycle time to make defect free products
- CO2: Operate and practice processing equipments
- CO3: Explain the significance of the test, detailed procedure to conduct the test and interpretation of results
- CO4: Explain the importance of ISO and ASTM standards for polymer testing.

PART A- PROCESSING

- 1. Hand operated injection molding machine: Different materials, molds and optimization of cycle time
- 2. Hand operated blow molding machine: Different materials and optimization of cycle time
- 3. Pneumatic injection molding: Different materials, molds and optimization of cycle time
- 4. Pneumatic blow molding machine: Different materials, molds and optimization of cycle time
- 5. Semi-automatic injection molding machine: Different materials, molds and optimization of cycle time
- 6. Fully automatic injection molding machine: Different materials, molds and optimization of cycle time
- 7. Extrusion of strands and pelletization
- 8. Blown film extrusion
- 9. Determination of melt flow index for different polymers
- 10. Rubber compounding for at least two specific products
- 11. Effect of mastication level on natural rubber compounds: Masticate the rubber for different times (5, 10, 15 and 20 minutes) and find out the variation of solution viscosity. Plot solution viscosity Vs time.
- 12. Rubber compounding using Haake batch mixer
- 13. Blending of two polymer using Haake twin screw extruder

PART B: TESTING

- 1. Tensile tests (A) Plastics and (B) Rubbers
- 2. Flexural test (Plastics)
- 3. Specific gravity of rubbers
- 4. Durometer hardness tests (A) Plastics and (B) Rubbers
- 5. Abrasion resistance (A) Plastics and (B) Rubbers
- 6. Izod impact strength (Plastics)
- 7. Flex-fatigue strength (Rubbers)
- 8. Thermal properties (Plastics) (i) heat distortion temperature (HDT) and (ii) Vicat softening temperature (VST)
- 9. Electrical properties (Plastics) (i) Break down voltage and (ii) Dielectric strength

- 10. Resilience studies of rubbers
- 11. Mooney viscosity, Mooney scorch and curing characteristics of rubber compounds
- 12. Rubber swelling and compression set studies

References:

- 1. Vishu Shah, Handbook of plastics testing technology, John Wiley, New York, 2007
- 2. Processing Technology Laboratory Manual (Department of PST).
- 3. Isayev, Injection molding and compression molding fundamentals, Marcel Dekker, 2010
- 4. Alan Griff ,Plastics Extrusion Technology, Krieger Publishing Company,1996
- 5. Rosato and Rosato. Injection Molding Handbook, Hanser Publishers, 2010
- 6. Rosato and Rosato, Blow Molding Handbook, Hanser Publishers, 2010.
- Ed.Corish, Concise Encyclopedia of Plastics Processing and applications, Pergamon Press, 1996
- 8. Relevant ASTM standards for testing methods.
