JSS MAHAVIDYAPEETHA

JSS Science and Technology University

(Formerly SJCE),

JSS Technical Institutions Campus, Mysuru-06

Scheme of Teaching and Examination for

M. Tech., in Polymer Science and Technology

Applicable for students admitted in 2017

(I to IV semester Approved in BOS Meeting 2017)

CREDIT DETAILS

SEMESTER I28 creditsSEMESTER II28 creditsSEMESTER III18 creditsSEMESTER IV26 creditsTotal100 Credits

JSS MAHAVIDYAPEETA JSS Science and Technology University (Formerly SJCE), Mysuru – 570 006

DEPARTMENT OF POLYMER SCIENCE AND TECHNOLOGY SCHEME OF TEACHING

I Semester M. Tech. – Polymer Science & Technology Applicable for students admitting in 2017

Subject code	Name of the subject	Teaching Department	Credits			Contact hours	Marks			Exam duration in hrs	
		_	L	Т	P	Total		CIE	SEE	Total	
DST110	Polymer	PST	5	0	0	5	5	50	50	100	03
151110	Chemistry										
DCT120	Polymer	PST		0	0	5	5	50	50	100	03
FS1120	Characterization		5								
DCT120	Polymer Physics	PST	5	0	0	5	5	50	50	100	03
PS1150	and Rheology										
PST14X	Elective 1	PST		0	0	5	5	50	50	100	03
			5				_				
PST15X	Elective 2	PST				5	5	50	50	100	03
	Polymer	PST	-	-	1.5	1.5	3	50	-	50	-
PST16L	Synthesis and										
	Lab										
PST17S	Seminar		_	_	1.5	1.5	_	50	-	50	-
1011/0						1.0					
				Tota	al	28		Total 600			
				Cred	its			M	arks		

L=Lecture, T= Tutorial, P=Practical

Elective subjects:

Elective	Elective 1			Elective 2			
Subject	Course title		Subject	Course title			
code			code				
PST141	Surface Coating and Adhesion		PST151	High Performance Polymers			
	Technology						
PST142	Latex and Foam Technology		PST152	Applied Mathematics			
PST143	Polymer Reaction Engineering		PST153	Research Methodology			
PST144	Engineering Design With Rubber		PST154	Statistical Quality Control			

JSS MAHAVIDYAPEETA JSS Science and Technology University (Formerly SJCE), Mysuru – 570 006 Department of Polymer Science and Technology

SCHEME OF TEACHING

II Semester M. Tech., – Polymer Science & Technology Applicable for students admitting in 2017

			Credits			ts			Exam		
Subject	Name of	Teaching	L	Т	P	Total	Contact	CIE	SEE	Total	duration
code	the subject	Department	_				nours				In nrs
PST210	Polymer	PST	5	0	0	5	5	50	50	100	03
	Processing										
PST220	Designing of	PST	5	0	0	5	5	50	50	100	03
	Novel										
	Polymeric										
	Materials										
PST230	Polymer	PST	5	0	0	5	5	50	50	100	03
	Structure										
	Property										
	Relationships										
PST24X	Elective 3	PST	5	0	0	5	5	50	50	100	03
PST25X	Elective 4	PST	5	0	0	5	5	50	50	100	03
PST26L	Polymer	PST	-	-	1.5	1.5	3	50	-	50	-
	Processing and										
	Testing Lab										
PST27S	Seminar	-	-	-	1.5	1.5	-	50	-	50	-
	•		To	otal		28		Total		600	
			Credits				Mark	S			

L=Lecture, T= Tutorial, P=Practical

Elective subjects:

	Elective 3	Elective 4			
Subject	Course title		Subject	Course title	
code			code		
PST241	Polymer Degradation and Stabilization		PST251	Fiber Technology	
PST242	Polymer Product and Mould Design		PST252	Advanced Rubber Technology	
PST243	Design of Advanced Polymer Composites		PST253	Polymer Membranes and Drug Delivery	
PST244	Fabrication of Intrinsic Conducting		PST254	Specialty and Functional Materials	
	Polymers				
			PST255	Nano structured Materials	

JSS MAHAVIDYAPEETA JSS Science and Technology University (Formerly SJCE), Mysuru – 570 006 Department of Polymer Science and Technology

SCHEME OF TEACHING

III Semester M. Tech., – Polymer Science & Technology Applicable for students admitting in 2017

Sl. No	Subject code	Course title	Teaching department	Credits			ts	Contact hours	Marks			Exam duration in hrs
				L	Т	Р	Total		CIE	SEE	Total	
1.	PST31T	Practical Training in Industry / Exploration Research	-	0	0	4	4	_	100	_	100	_
2.	PST32P	Project Work (Phase-I)	-	0	0	14	14	_	100	_	100	_
				To cre	otal edits	5	18	_	Total mark	l KS	200	_

JSS MAHAVIDYAPEETA JSS Science and Technology University (Formerly SJCE), Mysuru – 570 006 Department of Polymer Science and Technology

SCHEME OF TEACHING

IV Semester M. Tech., – Polymer Science & Technology Applicable for students admitting in 2017

SI. No	Subject code	Course title	Teaching departme nt	Credits				Contact		Marks	Exam	
				L	Т	Р	Total	hours	CIE	SEE	Total	in hrs
1	PST41P	Project Work (Phase-II)	-	_		26	26	_	100	200	300	3
		Total credits		26	_	Total marks		300	_			

JSS Mahavidyapeetha JSS Science and Technology University (Formerly SJCE), Mysuru – 570 006

Department of Polymer Science And Technology

Scheme of Evaluation for III & IV Semesters of M.Tech., Programme

Event	Normal Period	Credits	Expected Outcome	Remarks
III Semester				
Industrial Training	September 2 nd Week	04	Report on industrial training / presentation	25% weightage for external evaluation 75% weightage for internal evaluation
CIE-I Synopsis Evaluation	October 1 st Week	04	Synopsis presentation with Objectives / Scope / Literature Survey	By department committee
CIE-II Midterm Evaluation-I	December 1 st Week	06	Comprehensive review of the progress	By department committee
CIE-III Verification of compliance	January 2 nd Week	04	Verification of Compliance of midterm evaluation-I	By department committee
IV Semester				
CIE-IV Midterm Evaluation-II	April 2 nd Week	08	Comprehensive review of the progress	By department committee
CIE-V Final Internal Seminar / Demonstration	June 2 nd Week	08	Discussion with final results and conclusions	By department committee
Report Preparation and Submission	July 2 nd Week	_	_	_
Thesis Evaluation and Viva-Voce	On or before 30 th August	10	-	By the panel of examiners with HOD or his nominee as Chairman
Results	31 st August	—	_	_

- **Note:** 1. Marks awarded for Industrial Training and total marks awarded for CIE-I, CIE-II and CIE-III put together shall be sent to the controller of examination by the 3rd week of January.
 - 2. Marks awarded for CIE-IV and CIE-V put together shall be sent to the controller of examination by the end of June.

Schedule of Events during the 2nd Year of M.Tech. Programme

•	Comn	nencement of III Semester	:	13 th July
	0	Industrial Training (8 weeks)	:	13 th July – 5 th September
	0	Evaluation of Industrial Training	:	2 nd Week of September
•	Repor	ting to Project work	:	7 th September
	0	CIE-I: Evaluation of Synopsis	:	1 st Week of October
	0	CIE-II: Mid-term Evaluation-I	:	1 st Week of December
	0	CIE-III: Verification of Compliance of Mid-term Evaluation-I	:	2 nd Week of January
•	Comm	nencement of IV Semester	:	16 th January
	0	CIE-IV: Mid-term Evaluation-II	:	2 nd Week of April
	0	CIE-V: Final Internal Seminar / Demonstration of the Project Work	:	2 nd Week of June
	0	Preparation of the M. Tech. Dissertation	:	3 rd Week of June-2 nd Week of July
	0	Submission of the M. Tech. Dissertation	:	2 nd Week of July
	0	Viva-Voce	:	On or before 30 th August
•	Anno	uncement of the Results	:	31 st August

Note: 1. If any day indicated is a holiday, then the event shall happen the next working day.

2. Marks awarded for Industrial Training and total marks awarded for CIE-I, CIE-II and CIE-III put together shall be sent to the controller of examination by the 3rd week of January.

3. Marks awarded for CIE-IV and CIE-V put together shall be sent to the controller of examination by the end of June.

PST110: POLYMER CHEMISTRY (5:0:0) Contact Hours: 5/week Course Outcomes: Upon successful completion of this course, the students will be able to **CO1** Explain the basic concepts of functionality, monomer, polymer and classifications. **CO2** Explain the methods of polymerizations and factors affecting on polymerization reactions **CO3** Explain the different polymerization methods **CO4** Explain the special topics in polymer synthesis and modification of polymers via chemical reactions for tailor made applications. **CO5** Explain the ring opening polymerizations and purification of polymers **Course Content:** Unit 1 **General introduction** 10h Introduction to polymers with emphasis on important concepts such as monomer, functionality and physical state (amorphous and crystalline), classification of polymers on the basis of source, elemental composition, heat, pressure, chemical reactivity, chemical/monomer composition, geometry and stereo regularity. Molecular weight of polymers – types of average molecular weight, molecular weight distribution (MWD) and its practical significance, experimental methods to determine molecular weight. Unit 2 10h **Chemistry and Mechanism of Polymerization** Definition of polymerization, factors affecting polymerization, mechanism of chain (addition) polymerization (free radical, ionic and co-ordination (stereo regular) polymerizations), Zeigler-Natta catalyst Mechanism of step (condensation) polymerization (with examples- Nylon 66, polyethylene terephthalate (PET) and phenol-formaldehyde (PF)) - molecular weight in step growth polymerization, kinetics of step growth polymerization Unit 3 **Methods of Polymerization** 10h Bulk, solution, precipitation, suspension, emulsion polymerization, solid phase, gas phase and (formulations, mechanism, properties of the polymer produced, advantages and disadvantages of each technique). Polyaddition polymerization, melt polycondensation, interfacial polymerization, solution polycondensation (advantages and disadvantages of each technique).

Unit	4 Copolymerization – introduction, free radical, ionic and copoly-condensation	10h				
	(with examples).					
	Special topics in polymer synthesis- Electrochemical polymerization, metathesis					
	polymerization, group-transfer polymerization, ATRP, plasma polymerization.					
	Advanced polymerization techniques.					
	Reactions of synthetic polymers - Chemical modification; preparation of polymer					
	derivatives.					
Unit	5 Ring Opening polymerizations	10h				
	General characteristics and polymerizability of cyclic monomers, ring opening					
	polymerization of cyclic ethers, anionic polymerization of epoxides, cationic					
	polymerization of cyclic amides (lactams), cyclic polymerizations of lactones and					
	some aspects of biodegradable ring opening polymers: glycolides & lactides.					
	Isolation and purification of polymers- polymer fractionation-fractional					
	precipitation technique partial dissolution (extraction) technique.					
References:						
1. I	1. R. J. Young and P. A. Lovell, Introduction to Polymers., 3 rd edition, CRC Press, New York,					
2	2011.					
2. 0	Gowariker, V. R.; Viswanathan, N. V., Polymer Science; Wiley: New York, 1986.					
3. I	Billmeyer Fred W. JR., Text book of polymer science, Wiley & Sons, New York, 1984.					
4. I	Rodriguez, F., Principles of Polymer Systems. 2nd Edition, McGraw-Hill Companies,	New				
	York, U.S.A., 1982.					
5. I	Raymond B. Seymour and Charles E. Carraher, Jr., Marcel Dekker AG, Polymer chemistry	y: An				
i	ntroduction. New York, 1981.					
6. (Ddian G, Principles of Polymerization. 4 th edition, Wiley Inter Science, New York, 2004.					
7. /	Anil Kumar and Rakesh Gupta, Fundamentals of Polymer Engineering, Marcel Dekker,	New				
	York, 2003.					
8. 0	G.S. Mishra, Introductory polymer chemistry, New Age International, 1993					
L	000					

PST120): POLYMER CHARACTERIZATION (5:0:0)	
Contac	t Hours: 5/week	
Course	Outcomes: Upon successful completion of this course, the students will be able to	
CO1	Explain the different spectroscopic techniques	
CO2	Explain the principle and applications of thermo-analytical techniques	
CO3	Describe the Microscopic, X-ray and chromatographic techniques	
Course	Content:	
Unit 1	Introduction to analytical instrumentation - Calibration, accuracy, precision,	10h
	reproducibility, standard deviation.	
	Spectroscopic Methods	
	Introduction, classification, Ultra-violet/Visible spectroscopy - Introduction,	
	principle, Lambert law, Beer's law, theory, instrumentation, procedure,	
	advantages, disadvantages, interpretation of spectrogram, applications-qualitative	
	analysis, quantitative analysis; purity, cis- and trans- conformation. Numerical	
Unit 2	Fourier transform infrared (FTIR) spectroscopy	10h
	Introduction, principle, theory, instrumentation, procedure, methods of sample	
	preparation, advantages, disadvantages, interpretation of spectrogram, and	
	applications-establishment of chemical structure of polymers, reaction kinetics,	
	polymer linkage, hydrogen bond formation, purity, copolymerization, qualitative	
	and quantitative results.	
	Chromatographic techniques	
	Principle of Gel permeation chromatography (GPC), mechanism of separation,	
	theory/techniques, instrumentation, molecular weight determination and	
	distribution (MWD), purity, composition, other applications.	
Unit 3	Nuclear Magnetic spectroscopy (NMR)- (¹ H NMR and ¹³ C NMR)	10h
	Introduction Principle, theory, Spin-spin coupling, coupling constant,	
	instrumentation, procedure, method of sample preparation, advantages,	
	disadvantages, applications – chemical structures, purity, tacticity.	
Unit 4	Thermal Methods	10h
	Introduction, general classification, advantages of the TA methods; Differential	
	scanning calorimetry (DSC and MDSC)- Introduction, theory, instrumentation,	

	method of analysis, factors affecting on DSC results, advantage, disadvantage,	
	interpretation of DSC thermograms, applications - T_g , T_m , determination of	
	blends composition, purity, identification of unknown polymers, degree of	
	crystallization, degree of cure and rate of cure studies/kinetics of curing,	
	plasticizers effect, Thermo gravimetric analysis (TGA) - Introduction Principle,	
	theory, instrumentation, procedure for analysis of sample, factors influence on	
	studies, advantages, disadvantages, applications - Purity, fiber content,	
	composition of compounded rubbers, identification of polymers/rubbers, thermal	
	stability, thermal degradation, kinetics of thermal degradation and IPDT. Dynamic	
	mechanical Analysis (DMA)- Introduction, principle, instrumentation, and its	
	applications.	
Unit 5	Microstructural analysis	10h
	X-ray diffractometry: X-ray diffraction analysis, experimental methods,	
	applications-Chain conformations, chain packing, disorder in the crystal, degree of	
	crystallinity, micro structural parameters, degree of orientations	
	Microscopic analysis: SEM, TEM, AFM; Morphology of polymers, Crystallization	
	behavior, phase separation and other applications.	
Referen	ces:	
1. D.Ca	mpbell and J.R. White – Polymer Characterization – Physical Techniques (Chapman	n and
Hall	, 1989	
2. F.W.	Billmeyer-Text book of Polymer Science - 3 rd ed. Wiley Interscience, 1984.	
3. K.J.S	Saunders-The Identification of Plastics and Rubber, Chapman & Hall, London 1970.	
4. Will	am C. Wake -Analysis of Rubber and Rubber like Polymers – Rev. ed. V	Viley
Inter	science, New York 1969.	Ĵ
1		

PST130: POLYMER PHYSICS AND RHEOLOGY(5:0:0)

Contact Hours: 5/week

Course Outcomes: Upon successful completion of this course, the students will be able to

CO1	Explain fundamentals of polymer physics and explain chain conformations in polymers.						
CO2	Explain polymer solution behavior and factors affecting the crystallizability.						
CO3	Explain crystalline morphology and kinetics of crystallization.						
CO4	Explain a suitable rheological model for a given application.						
CO5	Explain linear viscoelasticity and the importance of rheology in polymer processing.						
Course	ourse Content:						
Unit 1	Introduction	10h					
	Fundamental definitions, configurational states, shapes of polymer molecules-						
	bonding, conformation and chain statitiscs, typical bond lengths and angles, molar						
	mass and repeating units.						
	Chain conformations in polymers						
	Introduction, conformations (eclipsed, staggered, stable-trans and gauche,						
	conformational energy of ethane and n-butane), a single ideal chain mean-square						
	end-to-end distance, radius of gyration, Gaussian chain. Freely jointed chain.						
	Models for calculating the average end-end distance: freely jointed chain, freely						
	rotating chain, hindered rotation, realistic chain-excluded volume method, random						
	flight analysis, Worm-like chain, chains with preferred confirmations and						
	numericals.						
Unit 2	Polymer solutions	10h					
	Flory-Huggins Theory, osmotic pressure, The glass transition; free volume theory,						
	factors affecting the T_g . Crystallization and melting and glass transition						
	temperature; Degree of crystallization, factors affecting the crystallizability,						
	Measurements of crystallinity, T_g - Definition, Factors influencing the glass						
	transition temperature, T_g and Molecular weight, T_g , effect of plasticizers, T_g and						
	co-polymers, T_g and T_m , Importance of T_g , Numerical problems on these topics.						
Unit 3	Crystalline Morphology	10h					
	Introduction, degree of crystallinity, experimental determination, crystallites-						
	fringed micelle model, chain folded crystallites, extended chain crytallites,						
	spherulites and other polycrystalline structures, theories of chain folding and						
	lamellar thickness. Crystallinity in Polymers - Morphology of Crystalline						
	Polymers- Lamellae, Folded chain model, Spherulites, The fringed micelle model,						

	mechanism of Spherulites formation crystallization and melting Kinetics of		
	incentation of Spheruntes formation, crystallization and include. Kinetics of		
	crystallization: Theories of crystallization kinetics, Avrami equation. Numericals.		
Unit 4	Polymer rheology	10h	
	Introduction to rheology, fundamental concepts of creep and stress relaxation.		
	Boltzmann superposition principle, Rheological models - Maxwell, Kelvin,		
	Voight, Standard linear model. Response of elastic, viscous and viscoelastic		
	materials for static and cyclic load, complex modulus and compliance, numericals.		
Unit 5	Linear viscoelasticity	10h	
	Introduction to linear viscoelasticity, real materials-relaxation and retardation time		
	spectra. Master curve and time-temperature super position, analysis of time-		
	temperature scans, frequency scans.		
	Applications of rheology in polymer processing		
	Importance of rheology in polymer processing, time dependence of viscous flow,		
	rheology of injection molding and blow molding. Flow in capillaries, slits and		
	dies, numericals.		
Referen	ices:		
1. Ulf	W. Gedde. Polymer physics. First edition, Kluwer academic publishers, 1999.		
2. B. R	R. Gupta. Applied Rheology in Polymer Processing. Asian Books Private Limited,	New	
Delhi, 2005.			
3. E. T. Severs. Rheology of Polymers. Reinhold Publishing Co., New York, 1962.			
4. D. I. Bower. An Introduction to Polymer Physics. Cambridge University Press, 2002			
5. J.A.	5. J. A. Brydson. Flow Properties of Polymer melts. 2 nd edition, Ilife Books, London, 1981.		
6. C.D	. Han. Rheology in Polymer Processing, Academic Press, New York, 1976.		
7. J. M	. Dealy & Wissbrun. Melt Rheology & its role in Plastics Processing. Kluwer, 1990.		
L			

PST141: SURFACE COATING AND ADHESION TECHNOLOGY (5:0:0)

Contact Hours: 5/week

Course Outcomes: Upon successful completion of this course, the students will be able to:

CO1 Explain the synthesis, properties, applications of surface coating resins, pigments and

	pigment dispersions	
CO2	Describe different surface preparation methods and coating processes.	
CO3	Explain evaluation methods and applications of surface coatings	
CO4	Discuss the fundamental aspects and classification of adhesives	
CO5	Describe different test methods and application of adhesives	
Course	Content:	
Unit 1	Industrial coating resins	10h
	Synthesis, properties, formulations and applications as coatings of the	
	following resins to be discussed. Alkyds and polyesters, phenol formaldehyde,	
	silicon resin, epoxy resin, chlorinated rubber, polyurethanes and acrylic resins.	
	Pigments & dispersion	
	Manufacturing and properties of organic and inorganic pigments. Factors	
	affecting dispersions, preparation of pigment dispersion, grinding equipment.	
Unit 2	Coating processes - Surface preparation: mechanical cleaning, solvent	10h
	cleaning, alkali cleaning and acid pickling. Chemical conversion treatment.	
	Coating application: mechanism of film formation	
	Applying processes: brushing, dip coating and flow coating, curtain coating,	
	roller coating and spray coating Fixation	
	Curing : Physical, chemical and oxidative; Factors affecting coating properties.	
Unit 3	Testing and evaluation of coatings	10h
	Physico-mechanical, optical, and environmental properties.	
	Application of surface coating - Appliance finishes, automotive finishes, coil	
	coating, can coating, marine coating and aircraft coating, Powder coating	
Unit 4	Fundamental aspects of adhesion technology	10h
	Theories and mechanism of adhesion, types of adhesions	
	Adhesive classes	
	Structural adhesives: Epoxies, PF, UF and MF	
	Non structural adhesives: Natural rubber (NR), poly ester based (unsaturated	
	polyester), silicone, acrylics (reactive, aerobic, anaerobic and cyano acrylics),	
	polyurethane, poly vinyl acetate and ethylene vinyl acetate copolymer.	

Un	it 5	Testing of adhesives - Adhesive joint strength, environmental and related	10h
		considerations, fracture mechanics	
		Application of adhesives - Adhesives in electronics, wood and automotive	
		industry, Dentistry and drug delivery	
References:			
1. Swaraj Paul, Surface coatings; Science and Technology,2 nd edition, John Wiley & Sons, Inc.			
	1995.		

- Pizzi, A. (ed); Mittal, K.L. (ed), Hand book of Adhesive technology, Marcel Dekker, New York, 1996.
- 3. Edward M Petrie, Hanbook of Adhesives & Sealants, Mc Grew-Hill, Newyork , 2000
- R Lambourne and T R Strivens, Paint & Surface coatings. Theory and practice, 2nd edition, Woodhead Publishing Limited, 1999.
- 5. Charles A. Harper: Handbook of Plastics, Elastomers, and Composites, Fourth Edition. Plastics in Coatings and Finishes, McGraw-Hill Professional, AccessEngineering, 2002.
- 6. Lucas F. M. da Silva, Andreas Ochsner, Robert D. Adams, Handbook of Adhesion Technology, Springer- verlag Berlin Heidelberg 2011.
- 7. Cagle, Charles V, Handbook of adhesive bonding, Mc Graw` Hill.1982.
- 8. J. Sheilds, Adhesives Hand Book, 3rd edition, Butterworths, 1985.
- 9. R.Houwink and G.Solomon, Adhesion and Adhesives, Amsterdam Elsevier, 1965-1967.
- **10.** Skeist, irving, Handbook of adhesives, 2nd edition, Van Nostrand Reinhold Co., 1977.

000	
-----	--

PST142: LATEX AND FOAM TECHNOLOGY (5:0:0)		
Contact Hours: 5/week		
Course Outcomes: Upon successful completion of this course, the students will be able to		
CO1	Explain the basics of natural and synthetic lattices	
CO2	Describe the importance of various compounding ingredients and specifications of latex	
CO3	Explain the concepts of latex product manufacturing	
CO4	Explain latex foam process and characterization methods.	
CO5	Discuss the chemistry, structure-property and foam process of rigid and flexible	
	polyurethane foams	

Course Content:		
Unit 1	Introduction	10h
	Terminologies, classification of latex, properties and application of latex, handling	
	of latex.	
	NR and Synthetic lattices - Methods of manufacture, properties and applications	
	of Natural rubber latex, Synthetic lattices like, SBR, XSBR, HSBR, vinyl pyridine	
	latex, NBR, XNBR, PCR, PVAc, PVC and acrylic latex. Artificial lattices.	
Unit 2	Compounding of latex - Vulcanizing ingredients, stabilizers, destabilizing agents	10h
	and heat sensitizing agents, micro and nano fillers, protective agents, dispersing	
	agents, thickeners. Preparation of aqueous solutions, dispersions and emulsions.	
	Testing of latex - Total solid content, DRC, mechanical stability, chemical	
	stability, pH, KOH number, VFA number, particle size and size distribution of	
	dispersion.	
Unit 3	Manufacture of latex based products - Latex thread, Dipped goods, Carpet	10h
	backing, casting, spraying, spreading, rubberized coir, rubberized hair, Micro-	
	porous Ebonite, Can sealing, Latex cements, Latex laminated paper and boards,	
	Latex coated fabrics and cords, adhesives, emulsion paints, and electro deposition	
	of latex.	
Unit 4	Latex foam - Preparation of compound, gelation, foaming, molding, curing,	10h
	finishing, Dunlop and Talalay process. Application of latex foam. Foam testing:	
	Density, hardness, Flexing, static compression set, elongation at break, ageing, and	
	low temperature flexibility.	
	Microcellular foams - Introduction, processing of microcellular foams (solid state	
	batch process, semi continuous process, extrusion methods), concepts of open and	
	closed cell structure, properties and applications.	
Unit 5	Rigid and flexible polyurethane foam - Raw materials, blowing agents (chemical	10h
	and physical blowing agents, selection criteria), chemistry, manufacturing process,	
	properties and applications. Nanofoams	

References:

- 1. K.O.Calvert. Polymer lattices and their applications, Macmillan publishing Co., NY, 1982
- 2. D.C.Blackley. Polymer lattices; Science and Tech., Vol 1, 2 and 3. Chapman & Hall., 1997.
- 3. E.W. Madge. Latex Foam Rubber, MacLaren and Sons Ltd., London, 1962.
- 4. David Eaves. Handbook of polymer foams. RAPRA Technology, UK, 2004.
- 5. Gunter Oertel. Polyurethane hand book, Hanser Publisher, NY, 1994.

---000----

PST143: POLYMER REACTION ENGINEERING (5:0:0)

Contact Hours: 5/week		
Course Outcomes: Upon successful completion of this course, the students will be able to		
CO1	Explain the kinetics and mechanisms of Free-Radical Polymerization - Homogen	neous
	Systems	
CO2	Explain Heat removal and temperature programming of Homogeneous Free-Ra	dical
	Polymerization reactions taking place Batch, Semibatch, CSTR and tubular	
CO3	Explain Modeling of Free-Radical Polymerization (Heterogeneous) taking examp	le of
	HIPS polymerization	
CO4	Explain Control of Polymerization Reactors	
Course	Content:	
Unit 1	Free-Radical Polymerization - Homogeneous Systems	10h
	Introduction to Polymerization reactors - FRP mechanisms and kinetics.	
Unit 2	Free-Radical Polymerization - Homogeneous Systems - Heat removal and	10h
	temperature programming - Batch reactors - Semibatch (semicontinuous) reactors -	
	Continuous stirred-tank reactors - Tubular reactors. Gas phase reactor system	
Unit 3	Free-Radical Polymerization: Heterogeneous Systems - case study of High-	10h
	impact polystyrene - Modeling HIPS polymerization.	
Unit 4	Control of Polymerization Reactors - Characterization of the control problem -	10h
	Classical polymerization reaction control problems- Control of reaction rates and	
	of reactor temperature.	
Unit 5	Control of Polymerization Reactors - Control of monomer conversion and polymer	10h

	production - Control of molecular weight averages and MWDs - Control of	
	copolymer composition - Control of particle size and PSDs.	
Referen	ces:	
1. Jo	sé M. Asua ,Polymer Reaction Engineering , , Blackwell Publishing Ltd, 9600 Garsingt	ton
Ro	oad, Oxford OX4 2DQ, UK, 2007	
2. Na	auman, E. B., Chemical Reactor Design, Optimization and Scale up, Mc-Graw Hill, No	ew

- York, 2002.
- Thierry Meyer (Editor), Jos Keurentjes (Editor), Handbook of Polymer reaction Engineering, ISBN: 3-527-31014-2, Wiley VCH, Weinheim, 2005.
- 4. Nauman, E. B., Chemical Reactor Design, Wiley, New York, 1987.

PST144: ENGINEERING DESIGN WITH RUBBER (5:0:0)		
Contact Hours: 5/week		
Course	Outcomes: Upon successful completion of this course, the students will be able to	
CO1	Explain the unique properties of rubbers	
CO2	Explain rubber behavior with respect to static and dynamic loads in designing.	
CO3	Design molds and dies for rubber products.	
CO4	Design rubber products for damping, packaging and sealing applications.	
CO5	Explain the dynamic behavior of rubber/compounds through experim	ental
	technique(s).	
Course	Content:	
Unit 1	Introduction to the static load-deformation	10h
	Properties of rubber	
	Large strain theory: Theory of rubber elasticity, kinetic & phenomenological	
	theory.	
Unit 2	Dynamic force-deformation properties: Linear & non-linear viscoelastic	10h
	behavior.	
	Theories of strength: Influence of hysteresis on strength, strength and fracture	
	processes. Dynamic mechanical analysis of rubber	

Unit 3 Unit 4 Unit 5 Reference 1. A.N. C	Deformation of rubber units under equilibrium loading condition. Deformation of rubber units in shear compression & torsion. Damping : Dynamic spring stiffness, spring curve, Rubber springs. Basic concept of various rubber mountings and their design criteria. Vibration isolation & transmissibility-single degree of freedom system-isolation of shock & transient vibration-simple linear system. Introduction to the mold and die design , factors to be considered for mold & die design. Design procedure for different molds. Rubber in packaging, theory of bulk cushioning material-solid runner mats, design aspect. Bridge bearing – classification – design and principle	10h 10h
Unit 3 Unit 4 Unit 5 Reference 1. A.N. C	Deformation of rubber units in shear compression & torsion. Damping : Dynamic spring stiffness, spring curve, Rubber springs. Basic concept of various rubber mountings and their design criteria. Vibration isolation & transmissibility-single degree of freedom system-isolation of shock & transient vibration-simple linear system. Introduction to the mold and die design , factors to be considered for mold & die design. Design procedure for different molds. Rubber in packaging , theory of bulk cushioning material-solid runner mats, design aspect. Bridge bearing – classification – design and principle	10h 10h
Unit 3 Unit 4 Unit 5 Reference 1. A.N. C	 Damping: Dynamic spring stiffness, spring curve, Rubber springs. Basic concept of various rubber mountings and their design criteria. Vibration isolation & transmissibility-single degree of freedom system-isolation of shock & transient vibration-simple linear system. Introduction to the mold and die design, factors to be considered for mold & die design. Design procedure for different molds. Rubber in packaging, theory of bulk cushioning material-solid runner mats, design aspect. Bridge bearing – classification – design and principle 	10h 10h
Unit 4 Unit 5 Reference 1. A.N. C	of various rubber mountings and their design criteria. Vibration isolation & transmissibility-single degree of freedom system-isolation of shock & transient vibration-simple linear system. Introduction to the mold and die design, factors to be considered for mold & die design. Design procedure for different molds. Rubber in packaging, theory of bulk cushioning material-solid runner mats, design aspect. Bridge bearing – classification – design and principle	10h
Unit 4 Unit 5 Reference 1. A.N. C	transmissibility-single degree of freedom system-isolation of shock & transient vibration-simple linear system. Introduction to the mold and die design, factors to be considered for mold & die design. Design procedure for different molds. Rubber in packaging, theory of bulk cushioning material-solid runner mats, design aspect. Bridge bearing – classification – design and principle	10h
Unit 4 Unit 5 Reference 1. A.N. C	vibration-simple linear system. Introduction to the mold and die design, factors to be considered for mold & die design. Design procedure for different molds. Rubber in packaging, theory of bulk cushioning material-solid runner mats, design aspect. Bridge bearing – classification – design and principle	10h
Unit 4 Unit 5 Reference 1. A.N. C	 Introduction to the mold and die design, factors to be considered for mold & die design. Design procedure for different molds. Rubber in packaging, theory of bulk cushioning material-solid runner mats, design aspect. Bridge bearing – classification – design and principle 	10h
Unit 4 Unit 5 Reference 1. A.N. C	 design. Design procedure for different molds. Rubber in packaging, theory of bulk cushioning material-solid runner mats, design aspect. Bridge bearing – classification – design and principle 	10h
Unit 4 Unit 5 Reference 1. A.N. C	Rubber in packaging, theory of bulk cushioning material-solid runner mats, design aspect.Bridge bearing – classification – design and principle	10h
Unit 5 Reference 1. A.N. C	design aspect. Bridge bearing – classification – design and principle	
Unit 5 Reference 1. A.N. C	Bridge bearing – classification – design and principle	
Unit 5 Reference 1. A.N. C		
Reference	Rubber in fluid sealing static & dynamic sealing – design characteristics. Flexible	10h
Reference	composite – Diaphragms & their analysis, air spring and their analysis.	
1. A.N. C	es:	
Maria	Gent, Engineering with Rubber: How to design rubber components, Carl Hanser Ve	erlag,
Munic	ch,1992.	
2. Crawfo	2. Crawford, R. J. Plastics engineering; 3rd ed.; Butterworth-Heinemann: Amsterdam, 1998.	
3. McCru	3. McCrum, N. G.; Buckley, C. P. Principles of polymer engineering; Oxford University Press:	
Oxford, 1988.		
4. B. R.	4. B. R. Gupta, Applied Rheology in Polymer Processing, Asian Books Private Limited, New	
Delhi,	, 2005.	
5. Treloa	ar L. R. G. The physics of rubber elasticity: 3 rd ed : Clarendon Press : Oxford 2005	
6. E.F.Go	a, E. R. G. The physics of fubber cluster(y, 5 - ed., cluteration fress, oxford, 2005	
 B. R. Delhi, Treloa 	Gupta, Applied Rheology in Polymer Processing, Asian Books Private Limited, 2005. ar L. R. G. The physics of rubber elasticity: 3 rd ed : Clarendon Press : Oxford 2005.	New

PST151: High Performance Polymers (5:0:0)		
Contact Hours: 5/week		
Cours	e Outcomes: Upon successful completion of this course, the students will be able to	
CO1	Explain the synthesis, structure-property relationships and applications of engineering	
	polymers	
CO2	Explain miscibility of blends and select the polymers for high-performance applications	
CO3	Discuss the performance of polymers as bio-materials, LCPs & membranes.	

Course Content:		
Unit 1	Manufacturing (in brief), process-ability, structure-property relationships and the end use (applications) are to be discussed for the following engineering/ highperformance polymers with case studies: Polyamides, PET, PBT, PTFE, PC, PCTFE, PVDF, Polyarylate, Polyaramid,	10h
	Polyimides, Polyamide imides, Polyphenelene Sulphide, Polysulphone.	
Unit 2	Manufacturing (in brief), process-ability, structure-property relationships and the end use (applications) are to be discussed for the following engineering/ high performance polymers with case studies: Polyacetals, Poly phenylene oxide (PPO), Polyphenylene ether (PPE), Polyketones (PEK, PEEK), Ultra High Molecular Weight Poly Ethylene, Acrylonitrile butadiene styrene.	10h
Unit 3	Polymer Blends: Fundamentals of polymer blends and alloys, Designing a polymer blend, Mixers, Thermodynamic aspects of blending, Factors affecting miscibility of polymer blends- Thermodynamics, compatibility, solubility parameter, interaction parameter, composition, molecular weight, transition temperature, mechanism of blending, etc. Properties of miscible and immiscible blends. Morphology and Phase behaviours.	10h
Unit 4	Designing of Blends: Compatibilization (Alloying) Methods- types and role of compatibilizer, compatibilization methods, IPNs, mechanism and properties of compatibilized blends. Degree of compatibilization. Mechanism and theory of toughening, Toughening of thermoplastics and thermosets; Thermoplastic elastomers (TPEs). Blends of engineering polymers- based on PC, Polyamides, Polyesters [Case study including properties and applications].	10h
Unit 5	Biomaterials, Liquid Crystalline Polymers, Membranes Biomaterials: polymeric implant materials (Polyolefins, polyamides, acrylic polymers, fluorocarbon polymers, silicon rubbers, acetals). Biodegradable polymers for medical purposes, Biopolymers in controlled release systems. Biocompatibility & toxicological screening of biomaterials. Polymeric Membranes: Synthetic polymeric membranes and their applications. Liquid Crystalline Polymers: Requirements, classification, examples, properties, applications.	10h
References:		
1. N E 2. J	Archael L Berins. Plastic Engineering handbook of the society of plastics industry d, Van Nostrand Reinhold, 1991. acqueline I Kroschwitz. Concise Encyclopedia of Polymer Science and Engineering	Inc, 5 th . Wiley.
1 3. J	990. ames M Margolis. Engineering Thermoplastics properties and application, Marcel	Dekker

Inc, New York, 1985.

- 4. Paul and Newman. Polymer blends, Academic press, NewYork, 1978.
- 5. Lloyd M Robeson. Polymer blends- A comprehensive review, Hanser publishers, 2007.
- 6. John Mason and Leslie H Sperling. Polymer blends and composites, Plenum Press, New York, 1976.
- 7. J B Park, Biomaterials Science and Engineering, Plenum Press, 1984.
- 8. Sujata V. Bhat, Biomaterials, Narosa Publishing House, 2002.
- 9. Jonathan Black, Biological Performance of materials, Marcel Decker, 1981
- 10. C.P.Sharma & M.Szycher, Blood compatible materials and devices, Technomic Publishing Co. Ltd., 1991
- 11. Piskin and A.S. Hoffmann, Polymeric Biomaterials (Eds), Martinus Nijhoff Publishers. (Dordrecht. 1986)
- 12. Eugene D. Goldbera , Biomedical Polymers, Akio Nakajima
- 13. A . Rembaum & M. Shen, Biomedical Polymers, Mercer Dekkar Inc. 1971
- 14. L. Hench & E. C. Ethridge, Biomaterials An Interfacial approach

---000----

PST152: APPLIED MATHEMATICS (5:0:0)

Contact Hours: 5/week				
Course	Course Outcomes: Upon successful completion of this course, the students will be able to			
CO 1	Explain ODEs/PDEs and apply suitable numerical methods to solve them.			
CO 2	Solve systems of linear equations by exact / approximate methods, determine eigenv	alues.		
CO 3	Recognize suitable techniques to handle the given data and adopt correct method fo	r curve		
	fitting.			
CO 4	Determine values of functions by applying proper algorithms.			
CO 5	Interpret large data and compute measures of central tendency and deviations from			
	measures of central tendency.			
Course	Content:			
Unit 1	Ordinary and Partial differential equations: basic definitions and classification;	10h		
	examples from physical world-mass-spring system ODE, heat equation, wave			
	equation and diffusion equation.			
	Systems of linear equations and matrix computations: basic terminolgy -			
	consistency, overdetermined systems; exact and approximate solutions of systems			

	of linear equations – Gauss / Gauss-Jordan elimination, LU-factorisation, Gauss /	
	Gauss-Seidel iterative method; eigenvalues/eigenvectors- characteristics equation,	
	power method of determining the dominant eigenvalue; inverses of square	
	matrices.	
Unit 2	Curve fitting: Polynomial interpolation – Newton difference formulas, Lagrange	10h
	interpolation, Bezier curves; least square fitting lines / quadratic curves.	
	Root finding: Method of bisection, Chord method, Newton-Raphson's method	
	and combinations of these methods;	
	Statistics: measures of central tendencies, measures of deviations from central	
	tendencies; correlation; basic sampling theory.	
Unit 3	Introduction to machine computation: Number representaion on a machine – min /	10h
	max representable numbers, machine epsilon; errors arising out of approximations	
	and propagation of errors – absolute / relative errors, error propagation during	
	addition / multiplication of numbers, catastrophic addition;	
Unit 4	Computational Softwares: Numerical packages (Matlab/Scilab/ Bench Calculator),	20h
and	symbolic Algebra packages (Maple/Mathematica) and statistical packages (Data	
Unit 5	Melt/R / SciPy).	
	The practical will consists of using some of the above softwares to solve problems	
	from the topics dealt with in the first part of the course.	
Referen	ce:	
1. R J Schilling, and S L Harris. Applied numerical methods for Engineers using MATLAB, 1st		
edition,	Brooks/Cole Publishing Co.USA, 1999.	

PST153: RESEARCH METHODOLOGY (5:0:0)

Course Outcomes: Upon successful completion of this course, the students will be able to-

Contac	t Hours: 5/week
CO1	Explain the need of scientific research; and Conduct literature survey;
CO2	Critically evaluate current research and propose possible alternate directions for further
	work;

CO3	Develop hypothesis and methodology for research;	
CO4	Discuss basic statistics involved in data presentation, and to test the significance, va	lidity
	and reliability of the research results;	
CO5	Comprehend and deal with complex research issues in order to communicate	their
	scientific results clearly for peer review.	
Course	Content:	
Unit 1	Objectives and types of research: Motivation and objectives – Research methods	10h
	vs Methodology. Types of research with examples - Descriptive vs. Analytical,	
	Applied vs. Fundamental, Quantitative vs. Qualitative, Conceptual vs. Empirical.	
	Literature survey tools/ search engines (Thomson Innovation, Scifinder, web of	
	science).	
Unit 2	Research Formulation: Defining and formulating the research problem -	10h
	Selecting the problem - Necessity of defining the problem - Importance of	
	literature review in defining a problem - Literature review - Primary and	
	secondary sources - reviews, treatise, monographs-patents - web as a source -	
	searching the web - Critical literature review - Identifying gap areas from	
	literature review - Development of working hypothesis.	
Unit 3	Research design and methods: Research design – Basic Principles- Need of	10h
	research design — Features of good design - Important concepts relating to	
	research design - Observation and Facts, Laws and Theories, Prediction and	
	explanation, Induction, Deduction, Development of Models. Developing a research	
	plan - Exploration, Description, Diagnosis, and Experimentation. Determining	
	experimental and sample designs.	
Unit 4	Data Collection and analysis: Execution of the research - Observation and	10h
	Collection of data - Methods of data collection - Sampling Methods- Data	
	Processing and Analysis strategies - Data Analysis with Statistical Packages -	
	Hypothesis-testing - Generalization and Interpretation.	
Unit 5	Reporting and thesis writing: Structure and components of scientific reports -	10h
	Types of report - Technical reports and thesis - Significance - Different steps in	
	the preparation – Layout, structure and Language of typical reports – Illustrations	
	and tables - Bibliography, referencing and footnotes - Oral presentation - Planning	

 Preparation – Practice – Making presentation – Use of visual aids - Importance of effective communication. Application of results and ethics – Reproduction of published material, Plagiarism - Citation and acknowledgement - Reproducibility and accountability.

Intellectual Property Rights: IPRs- Invention and Creativity- Intellectual Property-Importance and Protection of Intellectual Property Rights (IPRs) - A brief summary of: Patents, Copyrights, Trademarks, Industrial Designs- Integrated Circuits-Geographical Indications-Establishment of WIPO-Application and Procedures.

References:

- 1. Kothari, C.R., Research Methodology: Methods and Techniques, New Age International, 1990.
- 2. Garg, B.L., Karadia, R., and Agarwal, An introduction to Research Methodology, RBSA Publishers, U.K., 2002. Sinha, S.C. and Dhiman, A.K., Research Methodology, Ess Ess, 2002.
- Trochim, W.M.K., Research Methods: the concise knowledge base, Atomic Dog Publishing, 2005.
- 4. Anthony, M., Graziano, A.M. and Raulin, M.L., Research Methods: A Process of Inquiry, Allyn and Bacon, 2009.
- 5. Day, R.A., How to Write and Publish a Scientific Paper, Cambridge University Press. 1992.
- 6. Fink, A., Conducting Research Literature Reviews: From the Internet to Paper. Sage Publications. 2009.
- 7. Coley, S.M. and Scheinberg, C. A., "Proposal Writing", Sage Publications, 1990.
- Keith Eugene Maskus, Intellectual Property Rights in the Global Economy, Washington, DC, 2000.
- 9. Subbarau N R, Handbook on Intellectual Property Law and Practice- S. Viswanathan Printers and Publishing Private Limited, 1998.

---000----

PST154: STATISTICAL QUALITY CONTROL (5:0:0)

Contact Hours: 5/week

Course Outcomes: Upon successful completion of this course, the students will be able to

CO1	Explain the philosophy and basic concepts of quality improvement and the DMAIC		
	process		
CO2	Explain use of statistical process control methods		
CO3	Design, use and interpret control charts		
CO4	Explain the analysis of process capability and measurement system capability		
CO5	Explain Acceptance Sampling		
Course	Content:		
Unit 1	Quality Improvement in the Modern Business Environment and the DMAIC	10h	
	Process: The Meaning of Quality and Quality Improvement, Dimensions of		
	Quality ,Quality Engineering Terminology, A Brief History of Quality Control and		
	Improvement, Statistical Methods for Quality Control and Improvement,		
	Management Aspects of Quality Improvement, Quality Philosophy and		
	Management Strategies, The Link Between Quality and Productivity, Quality		
	Costs, Legal Aspects of Quality, Implementing Quality Improvement, The		
	DMAIC Process, Examples of DMAIC.		
Unit 2	Methods and Philosophy of Statistical Process and Control Charts for	10h	
	Variables: Methods useful in quality control and improvement, modeling process		
	quality, describing variation, the stem-and-leaf plot, the histogram, numerical		
	summary of data, the box plot, probability distributions, important discrete		
	distributions, the hypergeometric distribution, the binomial distribution , the		
	poisson distribution, the pascal and related distributions, important continuous		
	distributions, the normal distribution, the lognormal distribution, the exponential		
	distribution, the gamma distribution, the weibull distribution, probability plots,		
	normal probability plots, some useful approximations, comments on		
	approximations.		
Unit 3	Control Charts for Attributes: Introduction, the Control Chart for Fraction	10h	
	Nonconforming, Development and Operation of the Control Chart, Variable		
	Sample Size, Applications in Transactional and Service Businesses, The		
	Operating-Characteristic, Function and Average Run Length, Calculations, Control		
	Charts for Nonconformities (Defects), Procedures with Constant Sample Size,		
	Procedures with Variable Sample Size, Demerit Systems, The Operating-		

	Characteristic Function, Dealing with Low Defect Levels, Nonmanufacturing	
	Applications, Choice Between Attributes and Variables Control Charts, Guidelines	
	for Implementing Control Charts.	
Unit 4	Process and Measurement System Capability Analysis: Introduction, Process	10h
	Capability Analysis Using a Histogram or a Probability Plot, Using the Histogram,	
	Probability Plotting, Process Capability Ratios, Use and Interpretation of Cp,	
	Process Capability Ratio for an Off-Center Process, Normality and the Process	
	Capability Ratio, More about Process Centering, Confidence Intervals and Tests	
	on Process Capability Ratios, Process Capability Analysis Using a Control Chart,	
	Process Capability Analysis Using Designed Experiments, Process Capability	
	Analysis with Attribute Data, Gauge and Measurement System. Capability Studies.	
	Attribute Gauge Capability, Setting Specification Limits on Discrete Components,	
	Linear and Nonlinear Combinations, Estimating the Natural Tolerance Limits of a	
	Process, Tolerance Limits Based on the Normal Distribution, Nonparametric	
	Tolerance Limits.	
Unit 5	Acceptance Sampling	10h
Unit 5	Acceptance Sampling Acceptance Control Charts, Control Charts for Multiple-Stream Processes, Group	10h
Unit 5	Acceptance Sampling Acceptance Control Charts, Control Charts for Multiple-Stream Processes, Group Control Charts, Other Approaches, SPC With Autocorrelated Process Data,	10h
Unit 5	Acceptance Sampling Acceptance Control Charts, Control Charts for Multiple-Stream Processes, Group Control Charts, Other Approaches, SPC With Autocorrelated Process Data, Sources and Effects of Autocorrelation in Process Data, Model-Based Approaches,	10h
Unit 5	Acceptance Sampling Acceptance Control Charts, Control Charts for Multiple-Stream Processes, Group Control Charts, Other Approaches, SPC With Autocorrelated Process Data, Sources and Effects of Autocorrelation in Process Data, Model-Based Approaches, A Model-Free Approach, Adaptive Sampling Procedures, Economic Design of	10h
Unit 5	Acceptance Sampling Acceptance Control Charts, Control Charts for Multiple-Stream Processes, Group Control Charts, Other Approaches, SPC With Autocorrelated Process Data, Sources and Effects of Autocorrelation in Process Data, Model-Based Approaches, A Model-Free Approach, Adaptive Sampling Procedures, Economic Design of Control Charts, Designing a Control Chart, Process Characteristics, Cost	10h
Unit 5	Acceptance Sampling Acceptance Control Charts, Control Charts for Multiple-Stream Processes, Group Control Charts, Other Approaches, SPC With Autocorrelated Process Data, Sources and Effects of Autocorrelation in Process Data, Model-Based Approaches, A Model-Free Approach, Adaptive Sampling Procedures, Economic Design of Control Charts, Designing a Control Chart, Process Characteristics, Cost Parameters. Advantages and Disadvantages of Sampling, Types of Sampling	10h
Unit 5	Acceptance Sampling Acceptance Control Charts, Control Charts for Multiple-Stream Processes, Group Control Charts, Other Approaches, SPC With Autocorrelated Process Data, Sources and Effects of Autocorrelation in Process Data, Model-Based Approaches, A Model-Free Approach, Adaptive Sampling Procedures, Economic Design of Control Charts, Designing a Control Chart, Process Characteristics, Cost Parameters. Advantages and Disadvantages of Sampling, Types of Sampling Plans, Lot Formation, Random Sampling, Guidelines for Using Acceptance	10h
Unit 5	Acceptance Sampling Acceptance Control Charts, Control Charts for Multiple-Stream Processes, Group Control Charts, Other Approaches, SPC With Autocorrelated Process Data, Sources and Effects of Autocorrelation in Process Data, Model-Based Approaches, A Model-Free Approach, Adaptive Sampling Procedures, Economic Design of Control Charts, Designing a Control Chart, Process Characteristics, Cost Parameters. Advantages and Disadvantages of Sampling, Types of Sampling Plans, Lot Formation, Random Sampling, Guidelines for Using Acceptance Sampling, Single-Sampling Plans for Attributes, Definition of a Single-Sampling	10h
Unit 5	Acceptance Sampling Acceptance Control Charts, Control Charts for Multiple-Stream Processes, Group Control Charts, Other Approaches, SPC With Autocorrelated Process Data, Sources and Effects of Autocorrelation in Process Data, Model-Based Approaches, A Model-Free Approach, Adaptive Sampling Procedures, Economic Design of Control Charts, Designing a Control Chart, Process Characteristics, Cost Parameters. Advantages and Disadvantages of Sampling, Types of Sampling Plans, Lot Formation, Random Sampling, Guidelines for Using Acceptance Sampling, Single-Sampling Plans for Attributes, Definition of a Single-Sampling Plan, The OC Curve, Designing a Single-Sampling Plan with a Specified OC	10h

References:

- Douglas C. Montgomery, Introduction to Statistical Quality Control, 7th Edition, John Wiley & Sons, Inc, New York, 2013.
- 2. Douglas C. Montgomery, George C. Runger, and Norma F Hubele, Engineering Statistics,.
- 3. John Wiley & Sons, Inc., New York, 1999.
- Douglas C. Montgomery and George C. Runger, Applied Statistics and Probability for Engineers, 5th Edition, John Wiley & Sons Inc., New York, 2010.

---000----

PST16L: POLYMER SYNTHESIS AND CHARACTERIZATION LAB (0:0:1.5)

Contact Hours: 3/week

Course Outcomes:	Upon successful	l completion of t	this course, th	he students will	have an ability to-

CO1	Explain the experimental procedure to synthesize & characterize the polymers along with
	its implications and to communicate it effectively:

- **CO2** Synthesize polymers and characterize them using modern tools;
- **CO3** Analyze, interpret and report the experimental data suitably.

List of experiments:

1	Preparation of polyaniline-	a conducting polymer.
---	-----------------------------	-----------------------

- 2 Preparation of compatibilized polymer blend using Haake twin screw extruder.
- 3 Interfacial polymerization of polyamide or polyester.
- 4 Micro emulsion polymerization of methylacrylate.
- 5 Precipitation polymerization of acrylonitrile.
- 6 Redox polymerization for preparation of polyacrylamide.
- 7 Preparation of potassium or sodium methacrylate.
- 8 Determination of polymer-polymer miscibility by viscosity, refractive index, specific gravity measurement.
- 9 Qualitative analysis (identification) of polymers: Rubbers and Plastics.
- 10 Determination of dry rubber content and total solid content in rubber latex.
- 11 DSC Studies of polymer samples (T_g, T_m, T_{crys}, T_{deg}, T_{cure})

12	TGA studies of polymer samples (composition, ash content, thermal stability, degradation
	behavior).
13	DMA studies of polymer samples (T _g , modulus, phase behavior, Tan delta).
14	Chemical structure analysis of monomers, additives and polymers using FTIR.
15	Electrical properties: LCR meter.
16	Crystalline and phase studies: Polarizing Optical Microscope.
17	Viscosity average molecular weight.
18	Chemical resistance of polymers.
19	Determination of acid value and hydroxyl value.
Refer	ences:
1. I	Practicals in Polymer Science - Synthesis and Qualitative & Quantitative Analysis of
I	Macromolecules, Siddaramaiah, CBS publishers & distributors pvt ltd. New Delhi 2012.
2. /	A practical course in polymer chemistry – S.H. Pinner, 1961 Oxford.
3. I	H. Lee and K. Neville in Encyclopedia of polymer science and technology, Vol. 6
Ι	Interscience, New York (1967)
4. I	R.A.Coderre, in Encyclopedia of Chemical Technology, 1 st Suppl. Vol., Interscience, New
Ţ	York (1957).
5. I	Experiments in polymer Science – Collins, Bares & Billmeyer, John Willey and Sons.
6. <i>I</i>	Annual Book of ASTM standards – ASTM publishers, Philadelphia – 1989.
7. I	Experimental Methods in Polymer Chemistry – Jan F. Rabek, John Wiley.
8. 1	Macromolecular Synthesis Vol 1 to 5, - J.A. Moore Ed, John Wiley.

PST210: POLYMER PROCESSING (5:0:0)

Contact Hours: 5/week

Course Outcomes: Upon successful completion of this course, the students will be able to-		
CO1	Explain the different polymer processing techniques.	
CO2	Derive polymer melt constitutive equations from first principle	
CO3	Explain the mix quality and the mixing mechanism.	
CO4	Design and control the process steps/parameters of reactive processing.	

CO5	Model and simulate the flow behavior of polymer melt mold filling.		
Course Content:			
Unit 1	Introduction to polymer processing - Current polymer processing practice,	10h	
	analysis of polymer processing in terms of elementary steps and shaping methods.		
	Introduction to polymer processing techniques- principle, design, typical		
	applications and case studies of extrusion, injection molding, thermoforming and		
	film blowing.		
Unit 2	The balance equations and Newtonian fluid mechanics. Non-Newtonian Fluid	10h	
	mechanics, polymer melt constitutive equations.		
Unit 3	Mixing - Introduction, distributive and dispersive mixing, mix quality evaluation,	10h	
	residence time and strain distributions. Mixing equipments, mixing mechanisms,		
	extruder as a mixer, motionless mixers, mixing in a stirred tank and practical		
	aspects of mixing.		
Unit 4	Reactive Polymer processing and compounding - Classes of polymer chain	10h	
	modification reactions carried out in reactive polymer processing equipment,		
	strategy of reactive extrusion. Reactor classifications, reactive compatibilization,		
	grafting techniques, functionalization of end groups, compatibilization by		
	additives, Polymer compounding.		
Unit 5	Injection molding - Introduction, feed system, hot and cold runners, balanced	10h	
	runner system, flow in an idealized runner system, theoretical aspects of mold		
	filling and simulation, molding window diagram, practical aspects of injection		
	molding, applications and trouble shooting		

References:

- 1. Zehev Tadmor and Costa G. Gogos, Principles of polymer processing, 2nd edition, Jhon wiley and Sons Inc. Publication, New Jersey, 2006.
- 2. Charles A Harper, Handbook of Plastic Processes, Jhon wiley and sons Inc. Publication, Newjersey, 2006.
- 3. Donald G. Baird and Dimitris I. Collias, Polymer processing, principles and design, John Wiley and Sons Inc., NY, 2001.
- 4. J K Fink. Reactive polymers fundamentals and applications- a concise guide to industrial polymers, William Andrew Publishing, Newyork, USA, 2005.
- 5. Stanley Middleman, Fundamentals of polymer processing. McGraw-Hill Inc., USA, 1977.
- Manas-Zloczower and Z. Tadmor, Mixing and compounding-theory and practice. Carl Hanser Verlag, 1994.

PST220	: DESIGNING OF NOVEL POLYMERIC MATERIALS (5:0:0)	
Contact	Hours: 5/week	
Course	Outcomes: Upon successful completion of this course, the students will be able to	
CO1	Explain the basic concepts of the structure- property-processing correlation of the	10h
	materials.	
CO2	Identify and formulate materials for tailor made engineering applications.	
CO3	Explain the role and synergistic effect of additives in polymers	
CO4	Design or develop solutions to evaluate the product performance	
CO5	Develop or design formulation for eco-friendly products.	
Course	Content:	
Unit 1	Polymer & Polymer Blends - Thermodynamic of polymer blends. Miscibility of	10h
	Polymers. Immiscible blends, LCST, UCST	
	Transition behavior of blends – T_g , T_m , crystallization, morphology of important	
	commercial polymers	
Unit 2	Compatibilization and mechanism, Reactive blending. Compatibilizers.	10h

	Plastics processing from material engineering point of view, Mixing, kneading,	
	granulation. Properties, stability and application of plastics; Evaluation of degree	
	of miscibility in polymer blends.	
Unit 3	Effect of additives on properties and processibility of Plastics - Reinforcement	10h
	(Long, Short fibers, and Particulate); Plasticizers, Process aids, Lubricants, Impact	
	Modifiers), Surface Property Modifiers (Antiblocking, Antislip agents, Antistaic	
	Agents, Adhesion Promoters)	
Unit 4	Optical Property Modifiers - Transparecy, Opacity, Colour, Fluorescent,	10h
	Phophorescent, Optical Brightening Pigments), UV Stabilizers, Antidegradants &	
	Stabilizers	
Unit 5	Compounding of Rubbers - Introduction, Compounding Hierarchy, Elastomers	10h
	Used in Rubber Compounding, Fillers for Rubber, Antidegradants, Processing	
	Agents, Vulcanization. Statistical design of experiments and analysis of results	
Referen	ces:	1
1. J. A.	Manson and L.H. Sperling, Polymer Blends and Composites, Plenum Press, New	York,
1976		
2. C. B	ooth and C. Price, Comprehensive Polymer Science, Pergamon Press, Oxford, 1989.	
3. Anil	K. Bhowmick, Rubber Products Manufacturing Technology, Marcel Dekker, New	York,
1994		
4. Robe	erts A.D., Natural Rubber Science and Technology, Oxford University Press, Oxford,	1988.
5. G. A	Alliger (Editor), I. J. Sjothun, Vulcanization of Elastomers: Principles and Practi	ce of
Vulc	anization of Commercial Rubbers, Reinhold Pub. Corp., New York, 1964.	
6. J.A.	Brydson, Plastic materials, 6 th Ed., Butterworth-Heinemann, Oxford, 1995.	
7. LA U	Jtracki, Polymer alloys and blends: thermodynamics and rheology, Hanser, Munich,1	990
8. DR I	Paul and S. Newman, Polymer Blends, Academic Press, New York, 1978.	
9. Charles B. Arends, Polymer Toughening, Marcel Dekker, New York, 1996.		
10. Nobert M Bikales, Mechanical properties of polymers, Wiley-Interscience, Newyork, 1971.		l.
11. Kier M. Finlayson and Melvyn A. Kohudic (Editors), Advances in Polymer Blends and Allo		Alloys
Tech	nology, Lancaster, Technomic, 1989.	
	000	

PST230: POLYMERS STRUCTURE PROPERTY RELATIONSHIPS (5:0:0)			
Contac	Contact Hours: 5/week		
Course	Course Outcomes: Upon successful completion of this course, the students will be able to-		
CO1	Explain the fundamental understanding about various structural parameters and	d its	
	correlations with various properties;		
CO2	Explain the understanding about molecular aggregation behavior, and influence	e of	
	structure on physico-mechanical properties.		
CO3	Predict material properties based on molecular orientation and additives;		
CO4	Estimate values of various properties by group contributions technique;		
CO5	Select the right polymer for specified applications.		
Course Content:			
Unit 1	Concepts of Polymer Structure and Properties: Chemical linkage between	10h	
	repeat units; approach and the concept of chemical structure of polymers (well		
	known polymers' chemical structures to be discussed), stearic regularity of		
	polymer chains. Inter-chain and intra-chain forces of interactions; determination of		
	tacticity and crystallinity. The concept of polymer properties (fundamental,		
	processing and product properties); Typology of polymers (general properties of		
	each family to be discussed), Structural basis for polymers to be- elastomers, fibers		
	and plastics.		
Unit 2	Macromolecules in aggregation: aggregation of polymer chains, structural	10h	
	features of crystallizable polymers, molecular arrangement in crystallites (eg. In		
	PE, syndiotactic vinyl polymers, PTFE, PVA, polyesters and polyamides); the		
	principles of crystallite structure, single crystals of polymers, the morphology of		
	polymers crystallized from melts (spherulites).		
	Structural influence on various properties: Optical, Mechanical, Electrical,		
	Thermal and Solubility.		

Unit 3	Influence of the Process Variables on the Properties: Orientation, degree of	10h
	orientation, measurement of degree of orientation, uni-axial orientation: meaning,	
	change of properties by orientation in amorphous and crystalline polymers; biaxial	
	orientation; quantitative relationships for some physical quantities after orientation	
	like: density, thermal expansion, thermal conductivity, refractive index	
	(birefringence), modulus of elasticity, mechanical damping, generalized stress-	
	strain relationship for polymers.	
	Effect of various additives on polymer behavior (to be discussed with some	
	specific examples).	
Unit 4	Group contribution on various properties: Volumetric, Calorimetric, Solubility,	10h
	Transition temperatures, Cohesive/adhesive and mechanical properties.	
Unit 5	Influence of molecular structure to predict the properties of specialty	10h
	polymers: water soluble polymers, oil soluble polymers, oil insoluble polymers,	
	resistance to gas permeation, flame retardant polymers, insulating polymer, coating	
	polymer, flexible polymers, water repellant polymers, heat resistant polymers,	
	transparent polymers, adhesive polymers, corrosion resistant polymers. High	
	performance Polymers.	
References:		L
1. Van	Krevelen, Properties of Polymers: Correlations with chemical structure, Elsevier Pub.,	NY,
1972		

- 2. Raymond B Seymour, Structure-property relationships in polymers, Plenum Press, NY, 1984.
- 3. Patrick Meares, Polymers-structure and bulk properties, Van Nostrand Pub., NY, 1965.

PST241: POLYMER DEGRADATION AND STABILIZATION (5:0:0)		
Contact Hours: 5/week		
Course	Outcomes: Upon successful completion of this course, the students will be able to-	
CO1	Describe the fundamental aspects of polymer degradation	
CO2	Explain thermal and photo degradation and their mechanism	
CO3	Discuss oxidative degradation of polymers	
CO4	Explain different stabilizers, antioxidants and fire retardants used in polymers	

CO5	Solve the problems related to polymer degradation	
Course	Content:	
Unit 1	Introduction to Polymer Degradation	10h
	The practical significance of polymer degradation, Polymer durability, Polymer	
	stabilization, recycling of polymers, degradable polymers and the plastics litter	
	problem, fire hazard of polymers, technological testing procedures, the scientific	
	study of polymer degradation process.	
Unit 2	Thermal degradation - Experimental methods, classification of thermal	10h
	degradation reactions, radical depolymerisation reactions, non-radical	
	depolymerisation reactions, cyclization reaction with elimination.	
	Photo-degradation - Introduction, photodegradation of polyolefins, acrylates and	
	methacrylates, copolymers of methyl methacrylate and methyl vinyl ketone,	
	polystyrene, polymers with heteroatoms in the main chain, condensation polymers,	
	photo oxidation.	
Unit 3	Oxidation of polymers - Auto oxidation, physical effects of auto oxidation in	10h
	polymers, the oxidation chain reaction, chemical changes in polymers during	
	oxidative degradation, the effect of chemical structure on oxidation rate, the effects	
	of physical structures of polymers on their rates of deterioration, oxidative	
	degradation of commercial polymers, degradation during melt processing,	
	degradation at high temperatures, during service, sanitization by pigments,	
	mechano- oxidation.	
Unit 4	Antioxidants and stabilizers - Mechanism of antioxidant action, chain breaking	10h
	antioxidants, preventive antioxidants, synergism and antagonism, chain breaking-	
	acceptor antioxidants, metal deactivators, UV screens and filters, stabilization of	
	polymers during manufacture and in service, melt stabilization, thermal oxidative	
	stabilization, polymer bound antioxidants, and UV stabilizers.	
	Degradation and the fire hazard - The flammability problem, flammability	
	testing, the burning cycle, additive and reactive fire retardants, phosphorus	
	compounds, antimony trioxide, aluminum trioxide, compounds of boron.	
Unit 5	Degradation in special environments - Polymers under stress, degradation in	10h
	polluted atmospheres, nitrogen dioxide, sulphur dioxide, degradation at high	

temperatures, ablation, mechanical and ultrasonic degradation, quantitative aspects of ultrasonic degradation, mechanism of bond scission, quantitative aspects of changes in molecular weight, degradation by high energy radiation, chemical changes in polymers, G values, radiation protection, hydrolytic degradation and recycling of polymers by hydrolysis.

References:

- 1. G.Scott, Elsveir, Atmospheric oxidation and antioxidants, London and New York, 1965
- 2. R.T. Conley, Thermal stability of polymers, Dekker, 1970.
- 3. B.Ranby and J.F. Rabek, Photo-degradation, Photo oxidation and photostabilisation of polymers, Wiley, 1975.
- 4. G Scott, N. Grassie, The Role of Peroxides in the Photodegradation of polymers, developments in polymer degradationApp. Sci. Pub., London, chapter 7. 1979
- G.Scott, Scott Mecahnism of antioxidatnt action, developments in polymer stabilization, App. Sci. Publication. London, Chapter 1. 1981
- 6. J. W. Lyons, The chemistry and uses of fire retardants, Wiley and sons, 1970.
- 7. R.M. Harrison and C.D. Holman, Ozone pollution in Britain., Chem. In. Brit., 18, 563, 1982.

PST24	PST242: POLYMER PRODUCT AND MOULD DESIGN (5:0:0)		
Contac	Contact Hours: 5/week		
Course	e Outcomes: Upon successful completion of this course, the students will be able to-		
CO1	Explain basic principles of plastic product design.		
CO2	Apply creep curve concepts for designing, assess the mechanical behavior of composi-	ites and	
	explain the fracture behavior of plastics.		
CO3	Explain the mold making and mold features.		
CO4	Explain intermediate mold design aspects.		
CO5	Design and draw simple molds.		
Course Content:			
Unit 1	Introduction- Material selection based on end use requirement of various	8h	
	products; principles of product design.		

	Product Design Features and design steps: Features: inside sharp corners, Wall	
	thickness, holes, shrinkages, bosses, ribs, threads, draft angle, gussets, parting	
	lines, rims, molded inserts, undercuts, tapers.	
	Design steps: Engineering and pseudo plastic design	
Unit 2	Design for stiffness- Use of creep curves, methods to improve stiffness. Analysis	12h
	of thermal stresses and strains for designing plastic products. Mechanical behavior	
	of composites: Design properties of composites.	
	Mechanical behavior of composites - aspect ratio, volume fraction), Analysis of	
	continuous fiber composite: longitudinal properties, equilibrium equation,	
	geometry of deformation equation, stress strain relationships.	
	Properties perpendicular to longitudinal axis: equilibrium conditions, geometry of	
	deformation equation, stress strain relationships.	
	Concept of stress concentration factor, Energy approach to fracture, stress intensity	
	approach to fracture, general fracture behavior of plastics, creep fracture of	
	plastics, crazing and fatigue in plastics.	
Unit 3	Mold design: Introduction to mold making, general mold construction, feeding	10h
	system cooling system, ejection systems.	
Unit 4	Intermediate mold design: Splits, side cores and side cavities, molding internal	10h
	under cuts, mold for threaded components	
Unit 5	Aspects of practical mold design: procedure for designing injection mold,	10h
	checking mold drawing, worked examples.	
Referen	ces:	
1. R.D	Beck, Plastics product design, Van Nostrand – Reinhold	
2. R.J.	Crawford, Plastics Engineering, 3 rd edition, Butterworth Heinemann.	
3. R.G.W.Pye, Injection mold design, Fourth edition, East west Pvt. Ltd., New Delhi, 1989.		
4. Dub	ois and Pribble, Plastics Mold Engineering Hand book, Chapman & Hall, 2007	
5. E. Miller, Plastics product design hand book – Part A and Part B., Marcel Dekker, N.Y.		
6. Levy & Dubois, Plastics Product Design Engineering Hand Book, Champman and Hall, 2007.		
L	000	

PST243: DESIGN OF ADVANCED POLYMER COMPOSITES (5:0:0)

Contact Hours: 5/week

Cours	Course Outcomes: Upon successful completion of this course, the students will be able to	
CO1	Explain the basics of composites and select a suitable matrix material	
CO2	Select a suitable reinforcement to meet the end product requirement.	
CO3	Explain composite processing techniques.	
CO4	Discuss the performance of polymer composites and failure mechanisms.	
CO5	Explain designing aspects of polymer composites.	
Cours	e Content:	
Unit 1	Introduction - Definition, reason for composites, classifications of composites,	10h
	advantages and disadvantages of composites.	
	Thermoplastic Matrix - Functions of matrix, raw materials, physical and	
	chemical properties, thermal and mechanical properties.	
	Thermoset Matrix - Epoxy; Curing reactions, hardener, gel time, viscosity	
	modifications, Prepeg making.	
	Unsaturated polyester resin; Catalyst, curing reactions, viscosity modifier. Alkyd	
	resin, vinyl ester, cyanate ester, polyimides, physical and chemical properties,	
	thermal behaviour, mechanical properties and uses.	
Unit 2	Reinforcements - Introduction, Functions of fillers, types, properties, chemistry	10h
	and applications of fillers such as silica, titanium oxide, talc, mica, silicon	
	carbide, graphite. Flakes - Both and natural and synthetic should be considered.	
	Fibers-Natural (silk, jute, sisal, cotton, linen) and synthetic, short and long fibers,	
	general purpose and high performance fibers, organic and inorganic fibers -	
	Properties, structure and uses; Glass fiber-classifications, chemistry,	
	manufacturing process. Properties and uses of Nylons, Carbon, Aramid, Boron,	
	aluminium-carbide fibres.	
	Coupling agents - Function, chemistry, methods of applications, advantages and	
	disadvantages.	
Unit 3	Processing of thermoplastic composites - Types of processing methods,	10h
	matched die molding, solution, film, lamination, sandwich. Processing conditions,	
	advantages and disadvantages.	
	Fabrications of thermoset composites- Hand lay up method, match die molding,	
	compression and transfer molding, pressure and vacuum bag process, filament	

	winding, pultrusion, RIM, RRIM, VARTM & VERTM, Injection moulding of	
	thermosets, SMC and DMC, Advantages and disadvantages of each method.	
Unit 4	Factors influencing on performance of the composites - Aspect ratio, void	10h
	content, length of the fiber, nature of the fiber, structure property relationship	
	between fiber and matrix, modifications of the fiber surface, degree of interaction	
	between and fiber and matrix, wetting behavior, degree of cross linking.	
	Testing of composites - Destructive and non-destructive tests; Destructive-	
	tensile, compression, flexural, ILSS, impact strength and HDT. The basic	
	concepts of fracture mechanisms.	
Unit 5	Composite product design - Introductions, Design fundamentals, definitions,	10h
	structure-material-design relationships, design values and design constraints,	
	uncertainty in product design, constitutes of composite product, design process,	
	decision making in design, design methodologies, material considerations in	
	composite design, numerical problems.	
Referen	ices:	
1. Geo 1982	rge Lubin, Hand book of composites ,Van Nostrand Reinhold Company Inc, Ne 2.	w York
2. L.C.	Hollaway, Polymers and Polymer Composites in Construction, Thomos Telfo don,UK, 1990	ord ltd.,
3. Johr editi	n C. Bittence, Fran Cavern, Engineering Plastics and Composites, Materials data ser on, ASM International, 1990	ries, 2 nd
4. Cha	rles A. Harper, Handbook of Plastics, Elastomers and Composites, Illustrated Graw Hill Professional, 2002	edition,
5. Rosa	ato, Designing with Reinforced composites- Technology-Performance, Economics,	2 nd Ed.
	A Corleson And Joshn W Hillispia Delwana Composite design Energlopedia	(Vol 3)
D. Len	A. Carissen. And Joann W. Thinsple, Derwane Composite design Encyclopedia	(101 5)
7 Nich	poles P. Cheremicinoff and Paul N. Cheremicinoff Eiber glass Painforce Plast	ice and
Con	prosites Noves Publications N I U S Δ 1005	its and
	nposites, moyes i unications, m.s. 0.5.A. 1775.	octuring
0. 1110	inas J. Diozui, Composite applications – the future is now, society of Manufa	acturning
Eng	meets, michigall, 1909.	

- 9. Y.C. Ke, P. Strove and F.S. Wang, Polymer layered silicate and silica nano composites. Elsevier, 2005.
- 10. Sanjay K Mazumdar, Composite manufacturing, materials, product and process engineering, CRC Press, London, 2002.
- Vishu Shah, Hand Book of Plastics Testing Technology, 2nd edition, John Wiley & Sons, Inc NY. 1998.

PST244: FABRICATION OF INTRINSIC CONDUCTING POLYMERS (5:0:0)

Contact Hours: 5/week		
Course Outcomes: Upon successful completion of this course, the students will be able to-		
CO1	Explain the basic concepts of conducting polymers and methods of measurement	ts of
	electrical properties	
CO2	Explain the conducting mechanisms and factors effect on conducting properties	
CO3	Explain the synthesis, properties and applications of conducting polymers	
CO4	Explain the fundamental and applications of electro active polymers.	
Course	Content:	
Unit 1	Electrical properties measurements - Introduction to conducting polymers,	10h
	definitions, classifications, practical significance and applications of conducting	
	polymers,	
	Measurement of properties - conductivity, volume and surface resistivity, dielectric	
	strength, dielectric constant, dissipation factor, capacitance, break down voltage, arc	
	resistance and impedance.	
Unit 2	Conductor, semiconductor and factors affecting on electrical properties. Conductive	10h
	mechanism- percolation theory, charge carrier transport in composites, electrical	
	contacts between filler particles and different conduction models	
	Factors affecting - fillers nature, size, shape, nature of polymers, dispersion of the	
	fillers, morphology of the fillers, temperature, frequency/voltage and environmental	
	conditions	
Unit 3	Electrically conducting polymers - Introduction, prototype conducting polymer and	10h

	electrochemistry of conducting polymer films, co-polymers and composites of	
	conducting polymers, processable conducting polymers. Metal ion containing	
	polymers, solid polymer electrolyte, characteristics properties and applications of	
	electrically conductive polymers.	
Unit 4	Synthesis, characteristic properties and applications of conducting polymers	10h
	Poly acetylene, polyaniline, polypyrrole and polythiophene.	
	Fabrication of conducting polymer composites - Melt mixing method, solution,	
	emulsion, solution interfacial and insitu polymerization methods. Methods of	
	measurements of electrical properties and structure-property relationship.	
Unit 5	Electro active polymers - Filled polymers, EMI shielding, conductive coating,	10h
	signature materials, inherently conductive materials, doping, conducting	
	mechanisms. Applications; Rechargeable batteries, electro chromic devises,	
	sensors, microelectronics, photoconductive polymers, polymers in fiber optics,	
	polymers in nonlinear optics, Langmuir-Blodgett films, peizo and pyro electric	
	polymers and their applications.	
Referen	nces:	1
1. Conductive polymers and plastics. Edited by James M. Margolis, Chapman and Hall Lt		Ltd.,
London, 1989.		
a 11		

- Handbook of Conducting Polymers, Vol 1&2 (Ed.: T. A. Skotheim), Marcel Dekker, New York, 1986.
- Handbook of Organic Conductive Materials and Polymers (Ed.: H.S. Nalwa), Wiley, New York, 1997; Handbook of Conducting Polymers (Eds.: T. A. Skotheim, R. L. Elsenbaumer, J. F. Reynolds), 2nd ed., Marcel Dekker, New York, 1998

PST251: FIBER TECHNOLOGY (5:0:0)		
Contact hour: 5/week		
Course	Outcome: Upon successful completion of this course, the students will be able to	
CO 1	Explain the science and technology of spinning process	
CO 2	Characterize and Identify the fiber forming polymers.	

CO 3	Discuss the concept and design principles of protective textiles	
CO 4	Explain the theoretical background and applications of medical textiles	
CO 5	Describe the concept of sportswear and smart textile	
Course	Content:	
Unit 1	Production of fibers	10h
	Principle, technology, advantages and disadvantages of the following techniques;	
	Melt spinning, Dry spinning, wet spinning process, Electro spinning techniques.	
	Drawing of fibers.	
Unit 2	Requirement of fiber forming polymers	10h
	Crystallinity and orientation. X-ray diffraction measurement of Crystallinity.	
	orientation, crystal size, small angle X-ray scattering. Measurement of density of	
	fibres, Density Crystallinity, Infrared spectroscopy for determination of	
	orientation and crystallinity. Optical microscopy for measurement of	
	birefringence. Internal and surface structure by electron microscopy. Thermal	
	methods DSC TGA and TMA for structural investigation. Morphological	
	structure of cotton, wool, silk, regenerated cellulose, polypropylene, polyester,	
	nylon and polyacrylonitrile.	
Unit 3	Protective clothing - Clothing requirements for thermal protection, ballistic	10h
	protection, UV-protection, protection from electro-magnetic radiation and static	
	hazards, protection against microorganisms, chemicals and pesticides. Design	
	principles and evaluation of protective clothing.	
Unit 4	Medical Textiles - Textiles in various medical applications. Application oriented	10h
	designing of typical medical textiles (sutures). Materials used and design	
	procedures for protecting wounds, cardiovascular and other applications	
Unit 5	Sportswear - Clothing requirements for different sports. Development of highly	10h
	functional fibers, yarns and fabrics for temperature control and moisture	
	management. Stretch, bulky and light weight fabrics.	
	Stimuli sensitive intelligent textiles - Production, properties and applications.	
	Smart textile incorporating functional devices.	

References:

- 1. Kostikov, V. I. Fibre science and technology; Chapman & Hall: London, 1995.
- 2. Mark, H.F., Atlas, S.M., Man-made fibers; Science and Technology, Interscience Publishers: New York, 1967.
- 3. S.P Mishra, A Text book of Fiber Science & Technology, New age International Publishers, New Delhi, 2005.

---000----

PST252: ADVANCED RUBBER TECHNOLOGY (5:0:0) Contact Hours: 5/week Course Outcomes: Upon successful completion of this course, the students will be able to **CO1** Explain the additives, processing and characterization of rubber compound **CO 2** Design/develop rubber compounds to meet specific criteria. **CO 3** Analyze and interpret the effect of mixing process parameters. **CO 4** Explain different vulcanization techniques CO 5 Characterize, analyze and interpret the results of rubber compound testing **Course Content:** Mechanistic understanding of rubber processing (chemistry behind each Unit 1 10h process); Mechanism of curing (for different types of curing); Function of different rubber additives. Characterization of rubber compound – methods most prevalent in industry. Unit 2 **Compounding and Compounding Ingredients -** Overview of the science of | 10h compounding, Review of the properties and applications of natural and synthetic rubbers, Major classes of additives i.e., fillers, oils, plasticizers, processing aids, anti-degradents and curative systems, Examples of how compounds are designed to meet the requirements of various end applications will be discussed. Compounding and Mixing for Specific Applications - Mixing procedures for specific compounds, illustrating the variations that follow from the nature of the ingredients, application and the equipment available, Relationship between compounding and successful mixing is emphasized.

	Compounding and Mixing of Tire Compounds - An outline of the various	
	tire components, required properties in the finished tire, Resultant	
	compositions and mixing procedures; Effect of various compounding	
	ingredients on processing behavior of the Rubber compound; effect of various	
	elastomers, fillers, plasticizers and process aids.	
Unit 3	Mixing Process - An account of the mixing process from raw material	10h
	acceptance to packaging of the mixed compound, raw material specification	
	and testing, weighing and feeding of ingredients, the mixing process	
	(incorporation, distribution, and dispersion), flow behavior in mixers,	
	modeling the mixing process, process variables (e.g. temperature control, basic	
	mixing procedures, natural rubber mastication, and dump criteria), operating	
	variables (e.g. rotor speed, ram pressure, chamber loading), control of the	
	mixing process, discharge, shaping and cooling.	
	Mixing Cycles and Procedures - Cost of internal mixing, unit operations in	
	mixing, single-pass versus multiple-pass mixing, types of mix cycle, mill	
	mixing.	
	Rubber Mixing Equipment - Basic mixer design, Review of developments in	
	rotor design.	
	Continuous Mixing of Rubber - An outline of developments in extruder	
	mixing.	
Unit 4	Vulcanization - Equipment, Compounding, desired flow properties and cure	10h
	rates, for the batch processes of molding and autoclave vulcanization, for	
	continuous vulcanization of hose, profiles, wire coverings and calendared	
	products.	
Unit 5	Physical Testing of Rubber- Tensile, hardness, thermal, dynamic mechanical,	10h
	electrical testing of vulcanizates, tests for dispersion and contamination, tests	
	to identify surface exudation.	
	Processibility Testing of Rubber Compounds - Review the tests and testing	
	equipment used to assess the processibility of mixed compounds i.e., the	
	Mooney test, capillary rheometer, torque rheometer, oscillating disc cure	
	meters, rotor less cure meters, dynamic mechanical rheological testers	

(especially the RPA 2000) and stress relaxation instruments, Correlation (or its lack) between ODR and MDR cure times will be discussed, IISRP, comparative evaluation of processibility tests, 'Which is the Best Processibility Tester?' will be addressed.

References:

- 1. Rodgers, B. Rubber compounding: chemistry and applications; Marcel Dekker: New York, 2004
- 2. Gent, A. N. Engineering with rubber how to design rubber components; 2nd ed.; Hanser; Munich, 2001.
- 3. Morton, M., Rubber technology, 2nd Ed.; Van Nostrand Reinhold: New York, 1973.
- 4. Freakley, P. K., Rubber processing and production organization; Plenum Press: New York, 1985.
- 5. Brydson, J. A., Rubbery materials and their compounds; Elsevier Applied Science, London, 1988.
- Barlow, F. W., Rubber compounding: Principles, materials, and techniques; M. Dekker: New York, 1988.
- J.E. Mark, B. and Erman. F.R. Eirich, Science and Technology of Rubber, Elsevier Academic Press, UK, Third Edition, 2005.
- N.R. Legge, G.Holden and H.E. Schroeder, Thermoplastic elastomers, 2nd edition, Hanser Verlag, Munich, 1996.
- Blow, C. M.; Hepburn, C. Rubber technology and manufacture; 2nd ed.; Butterworth Scientific: London, 1982.
- 10. Alliger, G. and Sjothun, I.J., Vulcanization of elastomers: Principles and practice of vulcanization of commercial rubbers, Reinhold Pub. Corp., New York, 1964.

PST253: POLYMER MEMBRANES AND DRUG DELIVERY (5:0:0)

Contact Hours: 5/week

Course Outcomes: Upon successful completion of this course, the students will be able to

- **CO1** Explain the classification, behavior and selection of polymeric membranes
- **CO 2** Characterize polymeric membranes

CO 3	Explain the applications of polymeric membranes	
CO 4	Explain the principles of self-assemblies for drug delivery applications	
CO 5	Explain the role of polymers in controlled release of drug	
Course	Content:	
Unit 1	Fundamentals of Membranes - Introduction to membranes- definition-	10h
	classification of membranes- Homogenous dense membranes- Heterogeneous	
	asymmetric membranes -thin film composite membranes - liquid membranes-	
	ion exchange membranes -polymer selection for development of membranes-	
	polymer selection for development of membranes polymer property-strength-	
	viscosity-chemical resistance-processing temperature- factors membrane	
	performance.	
Unit 2	Development and Characterization of Membranes - Development of polymer	10h
	$membranes-modification-blending-crosslinking-grafting\ -\ copolymerization-$	
	characterization of membranes-solution techniques; viscosity, density, ultrasonic	
	velocity-thermal methods; TGA, DSC, TMA - spectroscopy methods; UV, FT-	
	IR, NMR-optical methods; SEM, TEM and XRD.	
Unit 3	Application of Membranes - Various applications and uses of membranes;	10h
	Micro filtration - ultra filtration - Reverse osmosis - Gas permeation -	
	Pervaporation - Nano filtration - Dialysis-electro dialysis.	
Unit 4	Self-Assemblies as Promising Vehicles for Drug Delivery - Introduction-	10h
	various self assembled aggregates as carriers-surfactants Micelles-Liposomes-	
	polymeric aggregates-polymeric Micelles-polyion complexes-functional	
	properties of polymeric carriers- morphological criteria-solubility and stability-	
	Biocompatibility-drug loading and releasing characteristics-Biological aspects -	
	pharmacokinetics at the systemic level – cellular uptake – release of drugs in the	
	cell.	
Unit 5	Role of Polymers in Controlled Release of Drug Delivery	10h
	Introduction- currently available polymers; diffusion-controlled systems-solvent-	
	activated systems-chemically controlled systems - Magnetically controlled	
	systems -soluble polymers as drug carriers: pinocytosis- Ideal soluble polymers	
	- Biodegradable or bioerodible polymers: Drug release by matrix solubilization-	

		Erodible diffusional systems - Monolithic systems - Mucoadhesive polymers -
		polymer containing pendent bioactive substituents- Mmatrix systems.
Re	feren	ces:
1.	Kaus	tubha Mohanty, Mihir K. Purkait. Membrane Technologies and Applications, CRC
	Press	s, London, 2011.
2.	Vasa	nt V. Ranade, A. Mannfred Hollinger, Drug Delivery Systems, 2 nd Edition, CRC Press,
	Boca	Raton, Florida, 2003.
3.	RYN	1 Huang. Pervaporation membrane separation processes. Elsevier Publications,
	Ams	terdam, 1991.
4.	Petri	nunk and T.M. Aminabhavi. Introduction to Molecular Science, 2 nd edition, Wiley
	Inter	science, New York, 2002.
L		

PST254: SPECIALTY AND FUNCTIONAL MATERIALS (5:0:0)		
Contact Hours: 5/week		
Course	Outcome: Upon successful completion of this course, the students will be able to:	
CO 1	Explain the basic concepts of specialty and functional materials	
CO 2	Classify and describe different types of specialty polymers	
CO 3	Describe the applications of specialty polymeric materials	
CO 4	Select a suitable material and fabrication technique of specialty polymers for sp	pecific
	applications	
Course	Content:	
Unit 1	Conducting polymers - Chemistry, Preparation, conducting mechanism,	10h
	properties and uses (LED market, future of lighting, smart materials or sensors)	
	of polyaniline and polypyrrole.	
Unit 2	High Temperature and fire resistant polymers: Importance, methods to	10h
	improve thermal stability and fire resistance, properties and applications of high	
	temperature and fire resistant polymers	
	Liquid crystal polymers: Smectic, nematic, cholestric crystals, theromotropic	
	main chain liquid crystal polymers, side chain liquid crystal polymers, chiral	
	nematic liquid crystal polymers, properties and applications of commercial LCPs.	

Unit 3	Polymers in photo-resist applications: Negative photoresists, positive	10h
	photoresists, plasma developable photoresists, photoresists applications for	1
	printing.	1
	Functional fillers: Enhancement of fire retardancy, Modification of electrical	
	and magnetic properties, Modification of surface properties, Enhancement of	
	processability; Functional colorants	1
Unit 4	Ionic Polymers: Classification, Synthesis, Properties (Ionic cross linking, ion-	10h
	exchange, hydrophilicity) of ionic polymers. Ionomers and polyelectrolytes:	1
	types, properties and applications.	1
	Synthetic polymer membranes: Types of membranes, Membrane preparation,	1
	membrane modules, applications.	1
Unit 5	Hydrogels: Classification, Synthesis, Characterization and applications Shape	10h
	memory polymers: Classification, thermomechanical cycle, molecular	1
	mechanism, activation method, applications of SMPs;	1
	Micro encapsulation: Morphology, core and shell materials, microencapsulation	1
	techniques, release mechanism and applications	1
Referen	ce:	
1. Plast	ics Technology Hand Book, Manas Chanda and Salil K Roy (4th edition), CRC	press,
New	York.	

PST255: NANOSTRUCTURED MATERIALS (5:0:0)			
Contac	Contact Hours: 5/week		
Course	Outcomes: Upon successful completion of this course, the students will be able to		
CO1	Explain the fundamentals of nanostructured materials,		
CO2	Synthesize and characterize the nanostructured materials.		
CO3	Prepare polymer nanocomposites for tailor made applications.		
CO4	Solve the problems related to health issues		
Course Content:			
Unit 1	Nanostructured materials - Introduction, basic of Nanoparticles, Nanowires,	10h	
	Nanorods, Nanoplatelets, Nanoclusters, Solid solutions.		

Classification, synthetic routes for nanoparticles production- super critical fluid based particle production, droplet and aerosol techniques, gas atomization approaches, dendrimers, block copolymers, self-assembly, block copolymer phase diagram, Block copolymer thin films, hyper branched polymers or star polymers, molecular imprint polymers, nano oxides, nanowires, nanotubes and nanofibres, polymer nanofilm, applications of polymeric nanoparticles.Bottom up and top down approaches and nanofabrication.

Unit 2 Polymer-inorganic nanocomposites - Introduction of nanotechnology and 10h polymer nanocomposites, the difference between nanocomposites and traditional filler enhanced polymers, the structure and classification of polymer nanocomposites, different types of nano fillers, one dimensional, Two dimensional and Three dimensional nanostructured materials, nanoclay- introduction, structure, chemistry and its modification with surfactants, preparative methods and structure of polymer/clay nanocomposites, types of polymers used for polymer/ clay nanocomosites preparation, material properties of polymer/clay nano composites, melt rheology and processing operations of nanocomposites, characterization of nanocomposites. Nanocomposites of polymers and inorganic particles, synthesis and properties. Major progress over the past one and half decades.

Unit 3Carbon nanomaterials - CNTs- Structural aspects, single walled and multi walled
nanotubes, preparation of nano tubes: carbon arc process, catalytic assisted
pyrolysis, laser technique, electro chemical method, purification of carbon nano
tube, properties of nano tubes, surface modification of CNTs, application of
nanotubes. Graphite nanofibre, Graphene oxide- chemistry, types, preparation and
surface modification and properties. Applications of Nanomaterials: Catalysis,
electronic, aerospace, automotive, surface coatings, magnetic, optical and
medicine.10hUnit 4Nanomaterials10h

Unit 4Nanocomposites of carbon nanotubes - Introduction, carbon nanotube-metal
matrix composites, carbon nanotube –ceramic-matrix composites – properties and
uses. CNT-polymer-matrix composites – methods of fabrication, characterization,
and their uses. Factorsinfluencing the performances of nanocomposites. Graphene10h

	oxide – polymer composites - fabrication, characterization and their uses.	
	Conducting polymeric nanomaterials - Introduction to conducting	
	polymers, mechanism of conduction in nanocomposite, effect of dopants on	
	conductivity, methods of synthesis of polymeric nanomaterials, structure-property	
	relationship, polymeric nanomaterials for electrical and electronic applications.	
Unit 5	Application of Nanotechnology - Nanotechnology for waste reduction and	10h
	improved energy efficiency, nanotechnology based water treatment strategies.	
	Nanoporous polymers and their applications in water purification,	
	Nanotoxicology. Use of nanoparticles for environmental remediation and water	
	treatment. Case studies and Regulatory needs.	
	Polymeric nanoparticles for drug and gene delivery - Introduction, transport	
	phenomenon and mechanism, features of polymeric materials, preparation and	
	characterization of nanoparticles, recent developments in nanoparticles	
	technology, nanoparticles for drug and gene delivery applications	

References:

- H.S.Nalwa (ed).-Encyclopedia of nanoscience and nanotechnology, American Scientific Publisher, USA, Vols. 1-10, 2004.
- Tapas Kuilla, Sambu Bhadra Dahu Yao, Nam Hoon Kim, Saswata Bose, Joong Hee Lee, Recent advances in graphene based polymer composites - Progress in Polymer Science 35(2010) 1350-1375.
- 3. Editors: S. Thomas, G.E. Zaikov and S.V. Valsaraj, Recent advances in polymer nanocomposites, Leiden, Boston, 2009.
- 4. Editors: S.Thomas, G.E.Zaikov, Progress in Polymers Nanocomposites Research , Nova publishers, USA, 2008. web site address: novapublishers.com
- 5. Y.C.Ke, P.Stroeve, F.S.Wang, Polymer layered silicate and silica nano composites, Elsevier, 2005.
- 6. B.K.G. Theng. Formation and properties of clay-polymer complexes. 2nd ed., Elsevier, Amsterdam, 2012.
- 7. B.K.G. Theng. Chemistry of clay-organic reactions. , Adam Hilger, London, 1974.
- 8. V.Chirala, G.Marginean, W.Brandl and T.Iclanzan, Vapour grown carbon nanofibres-poly propylene composites and their properties in Carbon nanotubes edited by V.N. Popov and

P.Lambin, p.227, Springer, Netherlands, 2006.

PST	PST26L: POLYMER PROCESSING AND TESTING LAB (0:0:1.5)			
Contact Hours: 3/week				
Cou	rse Outcomes: Upon successful completion of this course, the students will have an ability to			
C01	Explain the processing and testing related experimental procedures along with its			
	implications and to communicate it effectively			
CO2	Produce polymer products and to test them using modern tools			
CO3	Analyze, interpret and report the experimental data suitably			
List	of Experiments:			
Part	-A: Compounding & Processing			
1	Automatic injection molding: different materials, molds and optimization of cycle time.			
2	Rubber compounding using Haake batch mixer.			
3	Blown-film (cross-head) extrusion.			
4	Fabrication of Polymer Composites (hand lay-up, SMC, DMC).			
5	Rubber compounding for at least two specific product formulations.			
6	Compression Molding (rubbers, thermosets, blends).			
7	Additive manufacturing.			
8	Ultrasonication and solvent casting.			
9	Extrusion of plastic strands and pelletization*; Extrusion of rubbers.			
10	Effect of mastication level on natural rubber compounds*; Effect of additives, curative			
	system and process variables on properties of rubber products.			
11	Hand operated injection molding*			
12	Hand operated blow molding*			
13	Pneumatic injection molding*			
14	Pneumatic blow molding machine*			
Part	Part-B: Testing			

1	Tensile tests (i) Stress-Strain and (ii) creep and stress relaxation for- Plastics, Rubbers and
	Composites.
2	Flexural tests (Plastics)
3	Izod impact strength (Plastics) [notched and un-notched, for different materials]
4	Thermal properties (Plastics) (i) heat distortion temperature (HDT) and (ii) vicat softening
	temperature (VST)
5	Electrical properties (Plastics) (i) Break down voltage and (ii) Dielectric strength- for various
	thin sheet materials.
6	Determination of melt flow index and power-law index for different plastics.
7	Flammability Testing.
8	Mooney viscosity and curing characteristics of rubber compounds [#]
9	Crosslink density and compression set of rubbers [#]
10	Durometer hardness tests (A) Plastics, (B) Rubbers*; and Resilience studies of rubbers*
11	Abrasion resistance (A) Plastics and (B) Rubbers*
12	Flex-fatigue strength (Rubbers)*
	Note: (i) *Mandatory for students of other than B.E. PST and (ii) [#] to be performed with the
]	help of rubber industries
Re	ferences:
1.	Vishu Shah, Handbook of plastics testing technology, John Wiley, NewYork, 2007
2.	Processing Technology Laboratory Manual (Department Of PST).
3.	Isayev, Injection molding and compression molding fundamentals, Marcel Dekker, 2010
4.	Alan Griff, Plastics Extrusion Technology, Krieger Publishing Company, 1996
5.	Rosato and Rosato, Injection Moulding Hand book, Hanser Publishers, 2010.
6.	Rosato and Rosato, Blow Moulding Hand book, Hanser Publishers, 2010.
7.	Ed.Corish, Concise Encyclopedia of Plastics Processing and applications, Pergamon Press,
	1996.
8.	Relevant ASTM standards for testing methods.