

Engineering Mathematics-IV (Common to all branches)

Contact Hours/ Week	3(L)	Credits	3
Total Lecture Hours	39	CIE Marks	50
Total Tutorial Hours	00	SEE Marks	100
Sub Code	20MA410	Semester	IV

Prerequisites: Engineering Mathematics-I and II.

Course objectives:

1	Learn the concepts of finite differences, interpolation and their applications.
2	Evaluate Fourier transforms and use Z-transform to solve difference equations
3	Understand the concepts of calculus of functions of complex variables.
4	To make the student to solve system of linear equations, carryout matrix operations,
	determine the eigenvalues & eigenvectors.

Unit No.	Course Content	No. of Hours
UNIT-I	Numerical Differentiation and Numerical Integration : Derivatives using Newton-Gregory forward and backward interpolation formulae, Newton-Cotes quadrature formula, Trapezoidal rule, Simpson's1/3rd rule and Simpson's 3/8th rule. Applications to Engineering problems.	7 Hours
UNIT-II	Fourier Transforms: Finite and Infinite Fourier transform, basic properties, convolution theorem; inverse transforms Z-transforms: z-transforms and inverse z-transforms; solution of difference equation	8 Hours
UNIT-III	Complex Variables-I: Functions of complex variables, Analytic function, Cauchy-Riemann equations in Cartesian and polar coordinates, Consequences of Cauchy-Riemann equations, Construction of analytic functions	8 Hours
UNIT-IV	Complex Variables-II: Complex integration, Cauchy theorem, Cauchy integral formula, Taylor and Laurent series (statements only), Singularities, Poles and residues, Cauchy residue theorem.	8 Hours
UNIT-V	Linear Algebra: System of linear equations, Row operations, Echelon form Reduced Echelon form, Solution of Homogeneous and Nonhomogeneous equations, vector equations, Linear combinations, Linear independent/dependent vectors, Eigen values, Eigen vectors, Diagonalizations, solving a system of differential equations using diagonalization	8Hours

Text Books:

Sl. No.	Author/s	Title	Publisher Details
1	B.S.Grewal	"Higher Engineering Mathematics", 43 rd	Khanna Publications,
		edition	2015.
2	Ramana B V	Higher Engineering Mathematics", latest	Tata-McGraw Hill,
2	Kamana D. V	edition	2016
2	Ralph P.	Discrete and Combinatorial Mathematics,	PHI/Pearson
3	Grimaldi	4th Edition,	Education, 2005
4	Emuin Vrouzia	, "Advanced Engineering Mathematics",	Wiley Publications,
	EI will Kreyzig	10 th edition,	2016

Reference Books:

Sl. No.	Author/s	Title	Publisher Details
1	Erwin Kreyszig	"Advanced Engineering Mathematics", 10 th edition	Wiley Publications, 2015.
2	C. Ray Wylie and Louis C. Barrett	Advanced Engineering Mathematics", 6 th edition,	Tata-McGraw Hill 2005.
3	Louis A. Pipes and Lawrence R. Harvill,	Applied Mathematics for Engineers and Physicists", 3 rd edition,	McGraw Hill 2014.
4	Ralph P. Grimaldi	Discrete and Combinatorial Mathematics, 4th Edition	PHI/Pearson Education, 2005.
5	Maurice D. Weir, Joel R. Hass and George B. Thomas,	Thomas' calculus: Early Transcendentals", 12 th edition,	Pearson Education, 2016
6	Ramana. B.V	"Higher Engineering Mathematics", 11 th edition,	Tata-McGraw Hill. 2010
7	C.Ray Wylie, Louis. C. Barrett	Advanced Engineering Mathematics", 6 th edition	Tata-McGraw Hill 2005.
8	Louis A. Pipes and Lawrence R. Harvill	Applied Mathematics for Engineers and Physicists", 3 rd edition	McGraw Hill, 2014

Course Outcomes:

Upon completion of this course the student will be able to:

CO-1	Learn the concepts of finite differences, interpolation and their applications.								
CO-2	Apply numerical techniques to solve Engineering problems and fit a least								
	squares curve to the given data								
CO-3	Evaluate Fourier transforms and use Z-transform to solve difference equations								

CO-4	Examine and construct the analytic functions
CO-5	Classify singularities of complex functions and evaluate complex integrals.
CO-6	Ability to solve system of linear equations, carryout matrix operations, determines
	the eigenvalues & eigenvectors.

Mapping Course Outcomes with Program outcomes & Program Specific outcomes

Course	Program Outcomes									PSO's						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	2											2			
CO2	2	2											2			
CO3	2	2											2			
CO4	2	2											2			
CO5	2	2											2			

Course Title: Operating Systems	Course Code: 20CS410
Credits (L: T:P): 4:0:0	Contact Hours (L: T: P): 52:0:0
Type of Course: Lecture	Category: Professional Core Course
CIE Marks: 50	SEE Marks: 100

<u>Pre-Requisites:</u>Computer Organization and Architecture, Data Structures.

Course objectives:

1	To understand the concepts and terminology used in OS.
2	Introduce threading and multithreaded systems.
3	Illustrate process synchronization and concept of Deadlock.
4	Introduce Memory and Virtual memory management, File system and storage
	techniques.

Unit No.	Course Content			
1	Introduction to Operating Systems and System structures:			
	What operating systems do; Computer System organization; Computer			
	System architecture; Operating System structure; OS operations; Process management; Memory management; Storage management; Protection and security; Distributed system; Special-purpose systems; Computing environments, services	10		
	System structure: User - Operating System interface; System calls and its			
	types System programs; OS design and implementation; OS structure;			
	Virtual machines; OS generation; System boot.			

2	Process Management:	
	Process concept; Process scheduling; Operations on processes; Inter-	
	process communication. Multi-Threaded Programming: Overview;	11
	Multithreading models; Thread Libraries; Threading issues. Process	
	Scheduling: Basic concepts; Scheduling criteria; Scheduling algorithms;	
3	Process Synchronization and Deadlocks:	
	Synchronization: The Critical section problem; Peterson's solution;	
	Synchronization hardware; Semaphores; Classical problems of	11
	synchronization; Monitors.	
	Deadlocks: System model; Deadlock characterization; Methods for	

Educate Elevate Enlighten

JSS Mahavidyapeetha JSS Science And Technology University (Established Under JSS Science and Technology University Act No. 43 of 2013)

	handling deadlocks; Deadlock prevention; Deadlock avoidance;						
	Deadlock detection and recovery from deadlock.						
4	Memory Management:						
	Memory Management Strategies: Background; Swapping; Contiguous						
	memory allocation; Paging; Structure of page table; Segmentation.	10					
	Virtual Memory Management: Background; Demand paging; Copy-on-						
	write; Page replacement; Allocation of frames; Thrashing.						
5	File System, Secondary Storage Structures and Protection:						
	File System: File concept; Access methods; Directory structure; File						
	system mounting; File sharing; Protection. Implementing File System:						
	File system structure; File system implementation; Directory						
	implementation; Allocation methods; Free space management. Secondary						
	storage Structure: Mass storage structures; Disk structure; Disk						
	attachment; Disk scheduling; Protection: Goals of protection, Principles						
	of protection, Domain of protection, Access matrix, Implementation of						
	access matrix, Access control, Revocation of access rights						

Text Books:

Sl. No.	Author/s	Title	Publisher Details
1	Abraham Silberschatz, Peter Baer Galvin, Greg Gagne	Operating System Principles	9 th Edition, Wiley India, 2013

Reference Books:

Sl. No.	Author/s	Author/s Title			
1	D.M Dhamdhere	Operating systems - A concept-	4 th Edition, Tata McGraw-		
		based Approach	Hill, 2013		
2	P.C.P. Bhatt	Introduction to Operating Systems	Concepts and Practice, 4 th Edition, PHI, 2014		
3	William Stallings	Operating Systems: Internals and Design Principles	7th Edition,Prentice Hall of India,2017		
4	Harvey M Deital	Operating systems	3 rd Edition, Pearson Education,2007		

Web Resources:

Sl. No.	Web link
1	https://www.youtube.com/playlist?list=PLLDC70psjvq5hIT0kfr1sirNuees0NIbG
2	https://youtu.be/783KAB-tuE4 - NPTEL IIT, Madras

<u>Course Outcomes:</u> After completing this course, students should be able to:

CO-1	Understand various activities of process, thread, memory, file and secondary						
	storage components of an Operating System.						
CO-2	Apply various scheduling algorithms of process, memory and secondary storage						
	components.						
CO-3	Analyze the concepts of inter process communication, deadlocks, memory						
	allocation strategies, page replacement algorithms of OS.						
CO-4	Evaluate various algorithms for handling processes, threads, memory allocation						
	strategies and deadlocks.						

Course		Program Outcomes							PSO's							
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	1	3	1	1	1	3	2	2	2	3	2	1	2
CO2	3	3	3	3	3	2	1	1	2	1	1	2	3	3	1	2
CO3	3	3	3	3	3	1	1	1	2	2	2	2	3	3	1	2
CO4	3	3	3	3	3	2	1	1	2	0	0	1	3	3	1	2

Introduce concepts and terminology used in OS

- Explain threading and multithreaded systems
- Illustrate process synchronization and concept of Deadlock
- Introduce Memory and Virtual memory management, File system and storage techniques

Course Title: Design and Analysis of	Course Code: 20CS420
Algorithms	
Credits (L:T:P): 4:0:0	Contact Hours (L: T: P): 52:0:0
Type of Course: Lecture	Category: Professional Core Course
CIE Marks: 50	SEE Marks: 100

<u>Pre-requisite</u>: Data Structures.

Sl.No	Course Objectives
1	To introduce various design techniques and paradigms for designing algorithms.
2	To analyze the performance of various algorithms for their time and space complexity.
3	To identify, choose appropriate design technique and data structures for developing efficient algorithm for a given problem.

Unit No	Course Content							
1	Introduction to Algorithms and Problem Solving							
	Introduction: Notion of Algorithms, Fundamentals of Algorithmic							
	approach to problem Solving, Important Problem Types, Fundamental							
	data Structures. Analysis Framework, Asymptotic Notations and Basic							
	efficiency classes, Mathematical analysis of Recursive and Non recursive							
	algorithms, Examples.							
2	Brute force and Exhaustive Search, Divide and Conquer Design	10						
	Techniques:							
	Brute Force Approaches: Introduction, Selection Sort, Bubble Sort,							
	Sequential Search, Brute Force String Matching and Exhaustive search.							
	Divide and conquer: General Divide and Conquer, Masters theorem,							
	Recurrence relations, Binary Search, Merge Sort, Quick Sort,							
	Multiplication of large integers and Strassen's Matrices.							
3	Decrease and Conquer, Transform and Conquer, Space-Time	10						
	Tradeoffs							
	Decrease-and-Conquer Approaches: Introduction, Insertion Sort, Depth							
	First Search and Breadth First Search, Topological Sorting.							
	Transform-and-Conquer: Presorting, Balanced Search Trees, Heaps and							
	Heapsort.							
	Space-Time Tradeoffs: Introduction, Sorting by Counting, Input							
	Enhancement in String Matching, Hashing.							

Educate Elevate Enlighten

4	Dynamic Programming and Greedy Technique							
	Dynamic programming: Computing binomial coefficient, Warshall's and							
	Floyd's Algorithms, Knapsack Problem and Memory Functions.							
	Greedy Technique: Prim's Algorithm, Kruskal's Algorithm Dijkstra's							
	Algorithm, Huffman Trees.							
5	Limitations of Algorithmic Power and Coping with Limitations:	10						
	Lower-Bound Arguments, Decision Trees, P, NP, and NP-Complete							
	Problems. Coping With Limitations of Algorithmic Power:							
	Backtracking: N-Queens Problem, Hamiltonian Circuit Problem, Subset-							
	Sum Problem.							
	Branch-and-Bound: Assignment Problem, Knapsack Problem, Traveling							
	Salesman Problem.							

Text Books:

Sl. No.	Author/s	Author/s Title			
1	Anany Levitin	Introduction to The Design & Analysis of Algorithms	3 rd Edition, Pearson Education, 2012		

Reference Books:

Sl. No.	Author/s	Title	Publisher Details
1	Thomas H. Cormen,	Introduction to Algorithms	3 rd Edition, PHI ,2010
	Charles E. Leiserson,		
	Ronal L. Rivest, Clifford		
	Stein		
2	Ellis Horowitz, Sartaj	Fundamentals of Computer	2nd Edition, Universities
	Sahni,	Algorithms	Press, 2013
	SanguthevarRajasekaran		
3	R.C.T. Lee, S.S. Tseng,	Introduction to the Design	Tata McGraw Hill, 2012
	R.C. Chang &Y.T.Tsai	and Analysis of Algorithms	
		A Strategic Approach	
4	Dave and Dave	Design and Analysis of	2 nd Edition, Pearson
		Algorithms	

Web Resources:

Sl. No.	Web link
1	https://nptel.ac.in/courses/106101060/
2	https://nptel.ac.in/courses/106106131/

<u>Course Outcomes:</u> After completing this course, students should be able to:

CO-1	Understand various algorithm design techniques and Mathematical models.
CO-2	Apply appropriate data structures and suitable design technique to develop an
	algorithm for the given problem.
CO-3	Analyse the problem domain, use mathematical analysis model to estimate the
	running time efficiency of different algorithms for best, average and worst cases.
CO-4	Evaluate a suitable design technique to develop an algorithm for the given
	problem.

Course		Program Outcomes													PSO's				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO2	PSO3	PSO4			
CO-1	3	3	3	3	3	0	1	1	3	2	3	2	3	3	3	3			
CO-2	3	3	3	3	3	0	1	1	2	2	3	2	3	3	3	3			
CO-3	3	3	3	3	3	0	1	1	2	2	3	2	3	3	3	3			
CO-4	3	3	3	3	3	0	1	1	3	2	3	2	3	3	3	3			

Course Title: Data Communication	Course Code: 20CS430
Credits (L: T:P): 4:0:0	Contact Hours (L: T: P): 52:0:0
Type of Course: Lecture	Category: Professional Core Course
CIE Marks: 50	SEE Marks: 100

<u>Pre-requisite:</u> Data Structures

SL No	Course Objectives:
1	To introduce the basic concepts of data communication
2	Learn and analyse the working of physical, data link and network layers
3	Learn to solve the problems related to TCP/IP protocols, Line coding, Switching,
	Error detection and other related protocols.

Unit No.	Course Content	No. of Hours
1	Introduction: Data Communications, Networks, Network Types,	08
	Standards and Administration, Networks Models: Protocol Layering,	
	TCP/IP Protocol suite, The OSI model.	
2	Introduction to Physical Layer-1: Data and Signals, Digital Signals,	10
	Transmission Impairment, Data Rate Limits, Performance.	
	Digital Transmission: Digital to Digital Conversion (Only Line coding:	
	Polar, Bipolar and Manchester coding), Analog to Digital conversion (only	
	PCM), Transmission Modes.	
3	Bandwidth Utilization: Multiplexing, Transmission Media: Guided	10
	Media, Unguided Media, and Switching: Introduction, Circuit Switched	
	Networks and Packet switching, Structure of a Switch.	
4	Error Detection and Correction: Introduction, Block Coding, Cyclic	12
	Codes: Cyclic Redundancy Checksum, Forward Error Correction:	
	Hamming distance, XOR.	
5	Data link Layer: Introduction to Data-Link Layer: Introduction, Link-	12
	Layer Addressing, Data link Services: DLC services, Data link layer	
	protocols, Point to Point protocol (Framing, Transition phases only).	
	Media Access control: Random Access, Controlled Access and	
	Channelization	

Text Books:

Sl. No.	Author/s	Title	Publisher Details
1	Behrouz A. Forouzan	Data Communications and Networking	5th Edition, Tata McGraw-Hill, 2013

Reference Books:

Sl. No	Author/s	Title	Publisher Details			
1	William Stallings	Data and Computer Communication	10th Edition, Pearson			
			Education, 2014			
2	Alberto Leon-	Communication Networks -	2nd Edition Tata McGraw-			
	Garcia and Indra	Fundamental Concepts and Key	Hill, Reprint 2017			
	Widjaja	architectures				
3	Larry L. Peterson	Computer Networks – A Systems	5th Edition, Elsevier, 2012			
	and Bruce S. Davie	Approach				
4	Nader F. Mir	Computer and Communication	Pearson Education, 2007			
		Networks				

Web Resources:

Sl. No.	Web link
1	https://nptel.ac.in/courses/106105183/
2	https://nptel.ac.in/courses/106/105/106105082/

<u>Course Outcomes:</u> After completing this course, students should be able to:

CO-1	Describe the services offered by physical and data link layers									
CO-2	Summarizes network models, signals and conversions, error detection and									
	correction, switching and link protocols									
CO-3	Solve problems on TCP/IP protocols, Line coding, Switching requirements, Error									
	detection and Utilization efficiencies of link protocols									

Course	Program Outcomes												PSO's			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO2	PSO3	PSO4
CO-1	3	3	3	1	1	1	1	1	1	2	1	1	2	3	1	1
CO-2	3	3	3	1	1	1	0	1	0	1	1	1	3	3	2	2
CO-3	3	3	3	1	0	1	0	1	1	2	1	1	3	3	1	1

Course title: Software Engineering	Course Code: 20CS440
Credits (L:T:P): 4:0:0	Contact Hours (L: T: P): 52:0:0
Type of Course: Lecture	Category: Professional Core course
CIE Marks: 50	SEE Marks:100

Pre-requisite: Nil

Course objectives:

1	To give insight into basics of software engineering methods, practices, models and their
	appropriate applications.
2	To provide an idea of building requirement model and managing requirement analysis.
3	To furnish knowledge on design concepts and various forms of software architectural styles.
4	To emphasize on software testing approaches, levels and art of debugging.
5	Understanding the project management activities such as planning, estimation and scheduling.

Unit No.	Course Content	No. of Hours
1.	Software Process The Nature of Software, The software Process, Software Engineering	
	Practice, A Generic Process Model, Process Assessment and Improvement, Prescriptive Process Models, Agile development: Agility, agile process and principles, Extreme programming.	9
2.	Software Analysis	
	Requirements Engineering, Establishing the Groundwork, Eliciting Requirements, Developing Use Cases, Building the Requirements Model, Negotiating Requirements, Validating Requirements, Requirements	9
	Analysis.	
3.	Software Design Design within the Context of Software Engineering, The Design Process, Design Concepts, The Design Model, Software Architecture, Architectural Styles, Architectural design, Component Concepts, Designing Class-Based Components.	12
4.	Software Testing Introduction to Quality, Software Quality, A Strategic Approach to Software Testing, Strategic Issues, Test Strategies for Conventional Software, Test Strategies for Object-Oriented Software, Validation Testing, System Testing, The Art of Debugging, Software Testing Fundamentals, White-Box Testing, Basis Path Testing, Control Structure Testing, Black-Box Testing.	12
5.	Managing Software Project The management spectrum: The People, The Product and The Process.The	10

project planning process, Project resources, Software Project Estimation, Decomposition techniques, Empirical Estimation Models. Project Scheduling: Basic concepts and Principles, Defining a task network, Scheduling.

Text Books:

SI. No.	Author/s	Title	Publisher Details
1	Roger S Pressman	Software Engineering-A Practitioners approach	8th edition, McGraw-Hill Publication, 2017

Reference Books:

Sl. No.	Author/s	Title	Publisher Details
1	Pankaj Jalote	An Integrated Approach	3 rd edition, 2019Reprint, Narosa
		to Software Engineering	Publications
2	Ian Sommerville	Software Engineering	10th edition, Person Education Ltd,
			2016
3	Rajib Mall	Fundamentals of Software	4 th edition PHI Publications, 2014
		Engineering	
4	Hitesh	Fundamentals of Software	BPB Publications 2010
	<u>Mohapatra</u> , <u>Amiya</u>	Engineering	
	Kumar Rath		

Web Resources:

Sl. No.	Web link
1	http://nptel.ac.in/courses/106101061
2	https://nptel.ac.in/courses/106/105/106105182/

<u>Course Outcomes:</u> After completion of the course, students are able to:

CO-1	Explore the concepts of software process models.
CO-2	Analyze and model software requirements.
CO-3	Apprise system design concepts and process.
CO-4	Apprehend and apply software testing strategies.
CO-5	Comprehend software project management activities.

Course					Prog	gran	1 Ou	tcon	nes					PS	50's	
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO-1	3	2	2	2	2	1	1	1	2	2	1	2	3	2	2	2
CO-2	2	3	2	3	2	1	1	1	3	3	1	3	3	2	2	2
CO-3	2	2	3	2	2	1	1	1	2	3	1	3	3	2	2	2
CO-4	2	2	2	2	3	1	1	1	3	3	1	3	3	2	3	2
CO-5	3	2	2	2	3	1	1	1	3	3	3	3	3	2	3	2

Department: Computer Science and Engineering	
Course Title: Theory of Computation	Course Code: 20CS450
Credits (L: T:P):3:0:0	Category: Professional Core Course
Type of Course: Lecture	Total Contact Hours: 39:0:0
CIE Marks: 50	SEE Marks: 100

Pre-requisite: Discrete Mathematical Structure.

JSS Mahavidyapeetha JSS Science And Technology University (Established Under JSS Science and Technology University Act No. 43 of 2013)

Sl.No.	Course Objectives
1	Introduce core concepts in Automata and Theory of Computation.
2	Identify different Formal Language Classes and their Relationships.
2	Design finite state machine, Grammars and Recognize for different formal
3	Languages.
4	Prove or disprove theorems in automata theory using their properties.
5	Determine the decidability and intractability of Computational problems.

Unit No.	Course Content	No. of Hours
1	Introduction to Finite Automata: The central concepts of Automata	08
	theory; Deterministic finite automata; Nondeterministic finite automata;	
	An application of finite automata; Finite automata with Epsilon-	
	transitions; Equivalence and minimization of automata.	
2	Regular Expressions and Properties of Regular Languages: Regular	08
	expressions; Converting DFA's to regular expression by eliminating	
	states, Converting Regular Expressions to Finite Automata; Applications	
	of Regular Expressions; Proving languages not to be regular languages;	
	Closure properties of regular Languages.	
3	Context-Free Grammars and Languages: Context-Free Grammars;	08
	Parse trees; Applications of Context-Free Grammars; Ambiguity in	
	Grammars and Languages; Normal forms for CFGs.	
4	Pushdown Automata Definition of the Pushdown Automata; The	06
	languages of a PDA; Equivalence of PDA's and CFG's; Deterministic	
	Pushdown Automata.	
5	Introduction to Turing Machine: The Turing machine; Programming	09
	techniques for Turing Machines, Extension to the basic Turing machine,	
	restricted Turing machine. Undecidability: A language that is not	
	recursively Enumerable, Undecidable problem that is RE, Undecidable	
	Problems about turing Machines, post's correspondence problems, Other	
	Undecidable Problems.	

Text Books:

Sl. No.	Author/s	Title	Publisher Details
1	John E. Hopcroft, Rajeev	Introduction to Automata Theory,	3 rd Edition, Pearson
	Motwani, Jeffrey D.	Languages and Computation	education, 2007
	Ullman		
2	Peter Linz	Finite Automata & Formal	4 th edition, Narosa
		Languages	Publication, 2010.
3	John C Martin	Introduction to Languages and	3 rd Edition, Tata
		Automata Theory	McGraw- Hill, 2007.
4	Daniel I.A. Cohen	Introduction to Computer Theory	2nd Edition, John
			Wiley & Sons, 2004
5	Thomas A. Sudkamp	An Introduction to the Theory of	3rd Edition, Pearson
		Computer Science, Languages and	Education, 2006
		Machines	

Web Resources:

Sl. No.	Web link
1	https://nptel.ac.in/courses/106104148/
2	https://nptel.ac.in/courses/106/104/106104028/

1.

Course Outcomes: After completion of the course, students are able to:

	1								
CO-1	Understand and explain the concepts of Automata Theory and formal Language.								
CO-2	Apply the concepts of theoretical foundations of computing to show the equivalence								
	among different notations of regular and context free languages.								
CO-3	Analyze the given language and formulate regular expressions and context free								
	grammars.								
CO-4	Identify the class of languages based on Chomsky hierarchy to prove the								
	membership of regular and context free languages.								
CO-5	Design and implement automata for regular, context free, and recursively								
	enumerable languages corresponding to real word problem.								

Course		Program Outcomes													PSO's			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4		
CO-1	3	3	0	1	2	0	0	0	1	1	1	1	3	1	2	1		
CO-2	3	3	0	2	2	0	0	0	2	1	1	1	3	1	2	1		
CO-3	3	3	0	2	2	0	0	0	2	1	1	1	3	1	2	1		
CO-4	3	3	0	2	2	0	0	0	2	1	1	1	3	1	2	1		
CO-5	3	3	0	2	2	0	0	0	2	1	1	1	3	1	2	1		

Course Title: Operating Systems Lab	Course Code: 20CS46L
Credits (L:T:P): 0:0:1.5	Contact Hours (L: T: P): 0:0:39
Type of Course: Practical	Category: Professional Core Course
CIE Marks: 50	SEE Marks: 50

<u>Pre-requisite:</u>Computer organization and data structures.

SL.No	Course Objectives:
1	Learn to analyze and develop processschedulingalgorithms.
2	To introduce the concepts of operating system, process creation, synchronization and deadlock avoidance.
3	Formulate and solve various memory management and page replacement schemes.

Week	Programs										
1.	i) Exposure to Linux Operating System and Environment										
	ii) Write Shell Scripts for the Following:										
	a) Concatenation of two strings										
	b) Comparison of two strings Maximum of three numbers										
2.	Write Shell Scripts for the Following:										
	a) Fibonacci series										
	b) Arithmetic operation using case										
	c) Check whether a given no. is palindrome or not										
3.	Write Shell Scripts for the Following:										
	a) Finding largest of N numbers (storing numbers in an array)										
	b) Generating prime numbers.										
	c) Reading two matrices and finding sum										
4.	Simulation of ls, rm and grep commands using system calls.										
5.	a) Program to illustrate the creation, executing and termination of										
	processes withfork, exec and exit system calls.										
	b) Program to demonstrate the creation of Zombie and Orphan processes.										
	Program to demonstrate the use of I/O system calls for both console and file										
	I/O(read, write, open, lseek)										
6.	Simulate the following CPU scheduling algorithms										
	a. FCFS										
	b. SJF										
	c. SJF (Preemptive)										
7.	Simulate the following CPU scheduling algorithms										
	a. Priority										
	b. Priority (Preemptive)										

	c. Round Robin							
8.	i) Write a program to generate and print Fibonacci series with the following							
	requirements:							
	- Parent program should create a child and distribute the task of generating							
	Fibonacci no to its child.							
	- The code for generating Fibonacci no. should reside in different program.							
	- Child should write the generated Fibonacci sequence to a shared memory.							
	- Parent process has to print by retrieving the Fibonacci sequence from the							
	shared memory.							
	a) Implement the above using shmget and shmat							
	b) Implement the above using shm_open and mmap							
	Note: Shared object should be removed at the end in the program.							
	ii. Write a program to generate first N ODD numbers with the following							
	requirements:							
	- Parent program should create a child and distribute the task of generating							
	oddnumbers to its child.							
	- The code for generating odd numbers should reside in different program.							
	- Child should write the odd numbers to a shared memory.							
	- Parent process has to print the odd numbers by retrieving from theshared							
	memory.							
	a) Implement the above using shmget and shmat							
	Note: Shared object should be removed at the end in the program							
	iii. Write a program to generate and print Fibonacci series with the following							
	requirements.							
	- Parent program should create a child and distribute the task of generating							
	Fibonacci no to its child							
	- The code for generating Fibonacci no, should reside in different program							
	- Child should write the generated Fibonacci sequence to a shared memory							
	- Parent process has to print by retrieving the Fibonacci sequence from the shared							
	memory							
	a) Implement the above using shuget and shuat							
	b) Implement the above using shinger and similar							
	Note: Shared object should be removed at the end in the program.							
9.	Implement the following file allocation strategies							
	a. First Fit							
	b. Best Fit							
	c. Worst Fit							

Educate Elevate Enlighten

JSS Mahavidyapeetha JSS Science And Technology University (Established Under JSS Science and Technology University Act No. 43 of 2013)

10.	Implement the following using semaphores
	a) Producer – Consumer problem
	b) Reader'swriters' problem
11.	Simulate Bankers algorithm for Deadlock Avoidance.
12.	Simulate the following Page Replacement Algorithms
	a. FIFO
	b. LRU
	c. Optimal
13.	Lab Test/Event

Reference Books:

Sl. No.	Author/s	Title	Publisher Details
1	Abraham Silberschatz,	Operating System	9 th Edition, Wiley India,
	Peter Baer Galvin, Greg	Principles	2013
	Gagne		
2	William Stallings	Operating Systems:	7th Edition, Prentice Hall
		Internals and Design	of India,2017
		Principles	
3	D.M Dhamdhere	Operating systems - A	4 th Edition, Tata McGraw-
		concept-based Approach	Hill, 2013
4	P.C.P. Bhatt	Introduction to Operating	Concepts and Practice, 4 th
		Systems	Edition, PHI, 2014

Web Resources:

Sl. No.	Web link
1	https://youtu.be/783KAB-tuE4 - NPTEL IIT, Madras
2	https://nptel.ac.in/courses/106108101/

<u>Course Outcomes:</u> After completion of course, the students are able to:

CO-1	Analyze and implement processs chedulingalgorithms.								
CO-2	Apply the concepts of operating system and implement process creation,								
	synchronization and deadlock avoidance algorithms.								
CO-3	Implement and analyze various memory management and page replacement								
	schemes.								

Course		Program Outcomes													PSO's			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4		
CO-1	3	3	3	3	2	0	0	2	1	1	1	1	3	3	3	3		
CO-2	3	3	3	3	2	0	0	2	1	1	1	1	3	3	3	3		
CO-3	3	3	3	3	2	0	0	2	1	1	1	1	3	3	3	3		

Course Title: Design and Analysis of	Course Code: 20CS47L
Algorithms Lab	
Credits (L: T:P): 0:0:1.5	Contact Hours (L: T: P): 0:0:39
Type of Course: Practical	Category: Professional Core Course
CIE Marks: 50	SEE Marks: 50

<u>Pre-requisite:</u> Data Structures, Design and analysis of algorithms.

Sl No	Course Objectives:
1	Analyze the asymptotic performance of algorithms.
2	Write rigorous correctness proofs for algorithms.
3	Demonstrate a familiarity with major algorithms and data structures.
4	Apply important algorithmic design paradigms and methods of analysis.
5	Synthesize efficient algorithms in common engineering design situations.

Unit No.	List of Programs												
1	a) Implement Euclid's, consecutive integer checking and modified Euclid's												
	algorithms to find GCD of two nonnegative integers.												
	list.												
2	a) Implement Bubble sort algorithm to sort an array of 'N' elements in descending												
	order. Analyze the algorithm to find the order of growth of the algorithm's basic												
	operation count for best case and worst-case inputs and plot the graph for the												
	b) Implement Selection sort algorithm to sort an array of N elements in ascending												
	order. Analyze the algorithm to find the order of growth of the algorithm's basic												
	operation count for best case and worst-case inputs and plot the graph for the												
	same.												
3	a) Applying suitable design strategy implement a linear algorithm to evaluate a												
	given polynomial. Analyze the algorithm to find the order of growth of the												
	algorithm's basic operation count and plot the graph for the same.												
	b) Implement Brute force string matching algorithm to search for a pattern of length												
	'M' in a text of length 'N' (M<=N). Analyze the algorithm to find the order of												
	growth of the algorithm's basic operation count for best case and worst-case												
	inputs and plot the graph for the same												
4	a) Implement Merge sort algorithm to sort an array of 'N' elements in descending												
	order. Analyze the algorithm to find the order of growth of the algorithm's basic												
	operation count for best case and worst-case inputs and plot the graph for the												

	same.
	b) Implement Quick sort algorithm to sort an array of 'N' elements in descending
	order. Analyze the algorithm to find the order of growth of the algorithm's basic
	operation count for best case and worst-case inputs and plot the graph for the same
5	a) Implement Recursive binary search algorithm to search for an element in an array
	of N elements. Analyze the algorithm to find the order of growth of the
	algorithm's basic operation count for best case and worst-case inputs and plot the
	graph for the same. Also count and establish the order of growth of function calls.
	b) Applying divide and conquer technique, implement an algorithm to find largest
	and smallest element in an array of 'N' elements. Analyze the algorithm to find
	the order of growth of the algorithm's basic operation count andplot the graph for
	the same.
6	a) Implement Insertion sort algorithm, analyze its efficiency for worst case and best-
	case inputs (specify worst case and best-case inputs) and plot the graph
	b) Implement DFS algorithm to check for connectivity of a graph. If not connected,
7	a) Implement BES algorithm to check for connectivity of a graph. If not connected
/	display the connected components
	b) Apply DFS algorithm to perform topological sorting
8	a) Implement source removal algorithm to solve topological sorting problem
0	b) Implement DFS algorithm to check for acyclicity of a graph. If not, display the
	cycles.
9	a) Implement heap sort algorithm with bottom-up heap construction. Analyze its
	efficiency.
	b) Implement Horspool's String matching.
10	a) Implement Warshall's Algorithm to find the transitive closure of a given directed
	graph.
	b) Find All-pair shortest path for a given graph using Floyd's Algorithm.
11	a) Implement 0/1 Knapsack problem using Dynamic Programming.
	b) Find Minimum Cost Spanning Tree of a given undirected graph using Prim's
10	algorithm.
12	a) Find Winnhum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm
	b) Find shortest paths to other vertices in a weighted connected graph using
	Dijkstra's algorithm.
13	Lab Test/Event

Reference Books:

Sl. No.	Author/s	Title	Publisher Details			
1	Anany Levitin	Introduction to The Design	3 rd Edition, Pearson			
		& Analysis of Algorithms	Education, 2012.			
2	Ellis Horowitz, Sartaj	Fundamentals of Computer	2 nd Edition,			
	Sahni, Sanguthevar	Algorithms	Universities Press,			
	Rajasekaran		2013.			
3	Thomas H. Cormen,	Introduction to Algorithms	3rd Edition, PHI			
	Charles E. Leiserson, Ronal		,2010			
	L. Rivest, Clifford Stein					
4	R.C.T. Lee, S.S. Tseng,	Introduction to the Design and	Tata McGraw Hill,			
	R.C. Chang &Y.T.Tsai	Analysis of Algorithms A	2012.			
		Strategic Approach				

Web Resources:

Sl. No.	Web link
1	https://nptel.ac.in/courses/106101060/
2	https://nptel.ac.in/courses/106106131/

<u>Course Outcomes:</u> After completing this course, students should be able to:

CO-1	Analyze the problem domain; Choose the appropriate data structures and design
	technique based on the problem domain.
CO-2	Implement algorithms and perform analysis with empirical method.
CO-3	Evaluate the performance of different algorithms using different design techniques
	for solving the same problem.

Course	Program Outcomes											PSO's				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO-1	3	3	3	3	3	1	1	1	3	2	3	2	3	3	3	3
CO-2	3	3	3	3	3	1	1	1	3	2	3	2	3	3	3	3
CO-3	3	3	3	3	3	1	1	1	3	2	3	2	3	3	3	3

