Discrete Mathematical Structures (CS330)

S Brunda,
Assistant Professor, CS\&E,
SJCE, Mysuru

Course Outcomes

CO1: Knowledge of the concepts needed to test the logic of the program.
CO 2 : Demonstrate the understanding of relations and able to determine the properties,
CO3 : Perceive, construct and decode group codes based on the various methods.

CO4 : Demonstrate different traversal methods for trees and graphs.

Course Contents

Unit No.	Course Content	No. of Hours
1.	Fundamental of Logic: Basic Connectives and Truth Tables, Logical Equivalence: The Laws of Logic, Logical Implication: Rules of Inference, The Use of Quantifiers, Quantifiers, Definitions and the Proofs of Theorems.	08
2.	Relations: Properties of relations, Computer Recognition: Zeros- One Matrices and Directed Graphs, Partial; orders: Hasse diagrams , Equivalence Relations and Partitions, Lattices.	08
3	Elements of coding theory and Hamming Metric, generation of codes using Parity check and Generator matrices.	08
4.	Graph theory: Definitions and Examples, Subgraphs, Complements, and Graph Isomorphism, Vertex degree, Euler trail and circuits, Planar Graphs, Hamiltonian Paths and cycles.	08
5.	Trees: Definitions, Properties and Examples, Rooted trees, trees and sorting weighted trees and prefix Codes.	07

Text and Reference Books

Text Book:

1. Ralph.P.Grimaldi, B.V.Ramana, "Discrete and Combinatorial Mathematics",
$5^{\text {th }}$ Edition, Pearson Education -2009.

Reference Books:

1. Kenneth. H.Rosen, "Discrete Mathematical Structures Theory and Application", V Edition, PHI/Pearson, Education, 2004.
2. Kolman, Busby and Ross, "Discrete Mathematical Structures", Fourth Edition,

Prentice - Hall of India Pvt Ltd-2009.

What is Discrete Mathematics?

Discrete mathematics is a study of discrete structures which are abstract mathematical models that deals with discrete objects and their relationships.

Applications of Discrete Mathematics

- Checking the correctness of a program
- Computer Networks
- Operating System
- Finite Automata
- Artificial Intelligence
- Algorithm Design etc.,

Unit - 1

Fundamentals of Logic

What is Logic?

- Logic deals with the methods of reasoning
- Logic is extremely useful in decision making problems
- Logic theory forms the basics for Artificial intelligence, Fuzzy logic, Expert Systems etc.,

Propositions

- A proposition is a statement or sentence that can be determined to be either true or false (but no both).
- Examples:
- The only positive integers that divide 7 are 1 and 7 itself. (True)
- Everybody likes chocolate.(False)
- It is raining outside (True or False)

Continued...

Not all sentences are proposition
Eg,
$x+3>7 \quad / *$ we cannot decide whether True or False unless we know the value of $\mathrm{x} * /$

Give your book /* It's a sentence but not statement, hence its not a proposition */
What a beautiful garden! /* exclamation and commands are sentences but not statements */

Example

- Use variable(p, q, r..) to represent propositions
- $\mathrm{p}: 1+1=3$
- $\mathrm{q}:$ It is raining outside
- r: 'Today is Tuesday

The statements represented by $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are considered to be primitive statements because they cannot be broken down into anything simpler

Connectives

If p and q are propositions, new compound propositions can be formed by using connectives

- Most common connectives:
- Conjunction (and)
- Disjunction (or)
- Negation (not)
$\sim(\neg)$
- Exclusive-OR
v
- Condition (if ... then) \rightarrow
- Bi-Condition

Example

- P: It is raining
- Q: It is cold
- Form a new compound statement by combining these two statements
$P \wedge Q$: It is raining and it is cold
$\mathrm{P} \vee \mathrm{Q}$: It is raining or it is cold

Truth table of conjuriction

- The truth values of compound propositions can be described by truth tables.
- Truth table of conjunction

\mathbf{P}	\mathbf{Q}	$\mathbf{P} \wedge \mathbf{Q}$
T	T	
T	F	F
F	T	F
F	F	F

- $\mathrm{P} \wedge \mathrm{Q}$ is true only when both P and Q are true.

Example

- Let $\mathrm{P}=$ "A decade is 10 years"
- Let $Q=$ "A millennium is 100 years"
- $P \wedge Q=$ "A decade is 10 years" and "A millennium is 100 years"
- If P is true and Q is false then conjunction is false

Truth table of clisjunction

- The truth table of disjunction is

\mathbf{P}	\mathbf{Q}	$\mathbf{P} \vee \mathbf{Q}$
T	T	T
T	F	T
F	T	T
F	F	

- $p \vee q$ is false only when both p and q are false
- Example: $\mathrm{p}=$ "John is a programmer", $\mathrm{q}=$ "Mary is a lawyer"
- p vq= "John is a programmer or Mary is a lawyer"

Truth table of 1 Vegation

- Negation of P : in symbols $\sim \mathrm{P}$ or $\ulcorner\mathrm{P}$

P	$\sim P$
T	F
F	T

- $\sim P$ is false when P is true, $\sim P$ is true when P is false
Neg゙stion Continued.,.
- E.g
- Example, P : "John is a programmer"

$$
\sim \mathrm{P}=\text { "John is not a programmer" }
$$

- P: Paris is the capital of England
- \sim P: Paris is not capital of England

Exclusive disjunction

\mathbf{P}	\mathbf{Q}	$\mathbf{P} \mathbf{v} \mathbf{Q}$
T	T	F
T	F	
F	T	
F	F	F

- $P \vee Q$ is true only when P is true and Q is false, or P is false and Q is true.
\square Example: $\mathrm{p}=$ "John is programmer, $\mathrm{q}=$ "Mary is a lawyer"
$\square \mathrm{p} \underline{\mathrm{V} q}=$ "Either John is a programmer or Mary is a lawyer"

More compound statements

- Let p, q, r be simple statements
- We can form other compound statements, such as
$(p \vee q) \wedge r$
$\mathrm{p} \vee(\mathrm{q} \wedge \mathrm{r})$
$(\sim p) \vee(\sim q)$
$(\mathrm{p} \vee \mathrm{q}) \wedge(\sim \mathrm{r})$
and many others...

Example: truth table of $(P \vee Q) \wedge R$

\mathbf{P}	\mathbf{Q}	\mathbf{R}	$(\mathbf{P} \vee \mathbf{Q}) \wedge \mathbf{R}$
T	T	T	T
T	T	F	F
T	F	T	T
T	F	F	F
F	T	T	T
F	T	F	F
F	F	T	F
F	F	F	F

Conditional (Implication)

- A conditional proposition is of the form "If P then Q "
- In symbols: P \rightarrow Q
- Example:
$\mathrm{P}=$ " A bottle contains acid"
$\mathrm{Q}=$ "A bottle has a label"
$\mathrm{P} \rightarrow \mathrm{Q}=$ "If a bottle contains acid then it has a label "

Truth table of $\mathbf{P} \rightarrow \mathbf{Q}$

\mathbf{P}	\mathbf{Q}	$\mathbf{P} \rightarrow \mathbf{Q}$
T	T	T
T	F	
F	T	T
F	F	T

$P \rightarrow Q$ is true when both p and q are true or when P is false

Example

- If the mathematics department gets an additional amount of Rs. 40,000 then it will hire one new faculty member.
- Let

P: The Mathematics Department gets an additional Rs. 40,000
Q: The mathematics Department will hire one new faculty member.

Hypothesis and conclusion

- In a conditional proposition $\mathrm{P} \rightarrow \mathrm{Q}$,

P is called the bypothesis
Q is called the conclusion

Example

- For all real number x if $x>0$ then $x^{2}>0$
- $P: x>0$
- $\mathrm{Q}: \mathrm{x}^{2}>0$

For example $x=3,3>0$ then $3^{2}>0$ both are true.
$\mathrm{P} \rightarrow \mathrm{Q}=\mathrm{T} \rightarrow \mathrm{T}=\mathrm{T}$
$x=-2,-2>0$ is false but $-2^{2}>0$ is true
$\mathrm{P} \rightarrow \mathrm{Q}=\mathrm{F} \rightarrow \mathrm{T}=\mathrm{T}$

Bi-Conditional

- The double implication "p if and only if q " is defined in symbols as $p \leftrightarrow q$

p	q	$p \leftrightarrow q$	$(p \rightarrow q)^{\wedge}(q \rightarrow p)$
T	T	T	T
T	F	F	F
F	T	F	F
F	F	T	T

$\mathrm{p} \leftrightarrow \mathrm{q}$ is logically equivalent to $(\mathrm{p} \rightarrow \mathrm{q})^{\wedge}(\mathrm{q} \rightarrow \mathrm{p})$

Exercise Problems

Design a truth table for given compound statement

$$
(p \rightarrow q) \wedge[(q \wedge \neg r) \rightarrow(p \vee r)]
$$

Exercise Problems continues...

Let s , t and u denote the following primitive statements
s : Phyllis goes out for walk
t : The moon is out
u : It is snowing
Express the following compound proposition in words
a) $(\mathrm{t} \wedge \neg \mathrm{u}) \rightarrow \mathrm{s}$
b) $\mathrm{t} \rightarrow(\neg \mathrm{u} \rightarrow \mathrm{s})$
c) $\neg(\mathrm{s} \leftrightarrow(\mathrm{u} \vee \mathrm{t}))$

Solution

a) If the moon is out and it is not snowing, then Phyllis goes out for walk.
b) If the moon is out then if it is not snowing then Phyllis goes out for a walk.
c) It is not that Phyllis goes out for a walk if and only if it is snowing or the moon is out.

Exercise problems continues...

Write the compound proposition for the following sentences.
d) Phyllis will go out for walking if and only if the moon is out. $(\mathrm{s} \leftrightarrow \mathrm{t})$
e) If it is snowing and moon is not out, then Phyllis will not go out for walk ($\mathrm{u} \wedge \neg \mathrm{t}) \rightarrow \neg \mathrm{s}$ f) It is snowing but Phyllis will still go out for a walk. ($\mathrm{u} \wedge \mathrm{s}$)

Exercise problems continues...

Let p and q be primitive statement for which the conditional $\mathrm{p} \rightarrow \mathrm{q}$ is false.
Determine the truth values of the following compound propositions.

1. $\mathrm{p} \wedge \mathrm{q}$
2. $(\neg p \vee q)$
3. $\mathrm{q} \rightarrow \mathrm{p}$
4. $\neg q \rightarrow \neg p$

Exercise problems continues...

Find the possible truth values of p, q and r in the following cases

1. $p \rightarrow(q \vee r)$ is false
2. $p \wedge(q \rightarrow r)$ is true

Exercise problems continues...

If a proposition q has the true value 1, determine all the truth assignment for the primitive proposition $\mathrm{p}, \mathrm{q}, \mathrm{r}$ and s for which the truth value of the following proposition is 1
$[\mathrm{q} \rightarrow\{(\neg \mathrm{p} \vee \mathrm{r}) \wedge \neg \mathrm{s}\}] \wedge\{\neg \mathrm{s} \rightarrow(\neg \mathrm{r} \wedge \mathrm{q})\}$

Solution :

$$
\begin{aligned}
& \underbrace{q \rightarrow i}_{x \rightarrow\{(\neg p \vee r) \wedge \rightarrow s\}]} \wedge \\
& x \wedge y\{\underbrace{\{\rightarrow(\neg r \wedge q)}_{y}\} \\
& x \text { (tine) }
\end{aligned}
$$

$x \wedge y=1$ only when $x=1$ and $y=1$
onsider

$$
\begin{aligned}
& x=[q \rightarrow \underbrace{\{(\neg p \vee r) \wedge \neg s\}}_{x_{1}}] . \text { (riven }) .
\end{aligned}
$$

if $q=1$ (given)

$$
\therefore q \rightarrow \underbrace{\{(\neg p \vee r) \wedge \neg s\}}_{x_{1}=1}
$$

P	q	$P \rightarrow 0$
0	0	1
0	1	1
1	0	0
1	1	1

for x_{1} to be 1 (7pvr) $=1$ and $7 s=1$ as its conjunction.

$$
\therefore \text { If } \rightarrow \text { is }=1 \text {, then } s=0
$$

Now, Consider $y=\neg s \rightarrow(\neg r \wedge q)$

$$
1 \rightarrow(\underbrace{\sim r \wedge \alpha_{1}}_{\text {should be }})
$$

we know $q=1$, therefore for $7 r \wedge q$ to be equal to 1

$$
\begin{aligned}
\neg r=1 . & \therefore r=0 \\
& \therefore y=1 \rightarrow(70 \wedge 1) \\
1 & \rightarrow(\wedge \wedge 1) \\
& \therefore y=1
\end{aligned}
$$

Solution...
18
kovoner $r=0, s=0$
Again consider.

$$
x=[q \rightarrow \underbrace{\{(\neg p \vee r) \wedge \neg s\}}_{\text {should to } 1}]
$$

as $r=0$, for ($\neg p \vee r$) to be 1 Ip should be $1, \therefore p=0$

$$
\begin{aligned}
& x=[q\rightarrow\{(\neg 0 \vee 0) \wedge \rightarrow 0)\} \\
& q\rightarrow\{(1 \vee 0) \wedge 1)\} \\
& q \rightarrow\{(1 \wedge 1)\} \\
& q \rightarrow 1 \\
& x=1 \rightarrow 1=1 \\
& x \wedge y=1 \wedge 1=1
\end{aligned}
$$

hurefore $P=0, r=0$ \& $S=0$.

Tautology

- A proposition is a valucolog if its truth table contains only true values for every case
- Example: $p \rightarrow p \vee q$

p	\mathbf{q}	$\mathbf{p} \rightarrow \mathbf{p} \mathbf{v q}$
T	T	T
T	F	T
F	T	T
F	F	T

Contradiction

- A proposition is a Conuracicuion or absurcait if its truth table contains only false values for every case
- Example: p ^ ~p

p	$p^{\wedge}(\sim p)$
T	F
F	F

Contingency

A compound proposition that can be true or false (depending upon the truth values of its components) is called Conirigency.
i.e contingency is a compound proposition that is neither tautology or contradiction

Exercise problems :

1. Prove that, for any proposition $\mathrm{p}, \mathrm{q}, \mathrm{r}$ the following compound propositions are Tautology
a) $[(\mathrm{p} \rightarrow \mathrm{q}) \Lambda(\mathrm{q} \rightarrow \mathrm{r})] \rightarrow(\mathrm{p} \rightarrow \mathrm{r})$
b) $[\mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{r})] \rightarrow[(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow(\mathrm{p} \rightarrow \mathrm{r})]$
2. Show that $[(p \wedge q) \wedge r] \rightarrow(s \vee t)$ is contradiction

Logical equivalence (\Leftrightarrow)

\square Two propositions are said to be logicallyy equivalent \Leftrightarrow if their truth tables are identical.

\mathbf{P}	\mathbf{Q}	$\mathbf{P} \rightarrow \mathbf{Q}$	$\sim \mathbf{P} \vee \mathbf{Q}$
T	T	T	T
T	F	F	F
F	T	T	T
F	F	T	T

\square Example: $\mathrm{P} \rightarrow \mathrm{Q}$ is logically equivalent to $\sim \mathrm{P} \vee \mathrm{Q}$

$$
\mathrm{P} \rightarrow \mathrm{Q} \Leftrightarrow \sim \mathrm{P} \vee \mathrm{Q}
$$

Problems:

1. Prove that $[(p \vee q) \rightarrow r] \Leftrightarrow[(p \rightarrow r) \Lambda(q \rightarrow r)]$
2. $\mathrm{p} \Lambda(\neg \mathrm{q} \vee \mathrm{r})$ and $\mathrm{p} \vee(\mathrm{q} \Lambda \neg \mathrm{r})$ are not logically equivalent

Definitions

- Implication $p \rightarrow q$
- contrapositive, $\neg q \rightarrow \neg p$
- converse, $q \rightarrow p$
- inverse $\neg p \rightarrow \neg q$

Table 2.13

p	q	$p \rightarrow q$	$\neg q \rightarrow \neg p$	$q \rightarrow p$	$\neg p \rightarrow \neg q$
0	0	1	1	1	1
0	1	1	1	0	0
1	0	0	0	1	1
1	1	1	1	1	1

Converse

- The converse of $p \rightarrow q$ is $q \rightarrow p$

p	\mathbf{q}	$p \rightarrow \mathbf{q}$	$\mathbf{q} \rightarrow \mathrm{p}$
T	T	T	T
T	F	F	T
F	T	T	F
F	F	T	T

These two propositions are not logically equivalent

Contrapositive

- The contrapositive of the proposition $\mathrm{p} \rightarrow \mathrm{q}$ is $\sim \mathrm{q} \rightarrow \sim \mathrm{p}$.

p	q	$p \rightarrow q$	$\sim q \rightarrow \sim p$
T	T	T	T
T	F	F	F
F	T	T	T
F	F	T	T
They are logically equivalent.			

The Laws of Logic

We can prove whether the given Compound proposition is Tautology, Contradiction , contingency or logically equivalent using Truth table method.

But this method becomes tedious when the number of primitive proposition involved is more.
Hence easiest method is to prove using the Laws of Logic

1.
 De Morgan's laws for logic

- The following pairs of propositions are logically equivalent:

$$
\begin{aligned}
& \sim(p \vee q) \text { and }(\sim p)^{\wedge}(\sim q) \\
& \sim\left(p^{\wedge} q\right) \text { and }(\sim p) \vee(\sim q)
\end{aligned}
$$

Proof :

$\sim(p \vee q)$ and $(\sim p)^{\wedge}(\sim q)$

p	q	$p \vee q$	$\sim(p \vee q)$	$\sim p$	$\sim q$	$\sim(p) \wedge \sim(q)$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Therefore $\sim(p \vee q) \Leftrightarrow(\sim p)^{\wedge}(\sim q)$

2. Distributive Law

- $p \wedge(q \vee r) \Leftrightarrow(p \wedge q) \vee(p \wedge r)$
- $\mathrm{p} \vee(\mathrm{q} \wedge \mathrm{r}) \Leftrightarrow(\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{p} \vee \mathrm{r})$

Laws of Logic

- Let P, Q and R be the propositional variables. T' and F represent the True and False respectively.

$$
\neg \neg P \Leftrightarrow P
$$

Law of double negation

$$
\neg\left(\mathrm{P}_{\mathrm{V}} \mathrm{Q}\right) \Leftrightarrow \neg \mathrm{P}^{\wedge} \neg \mathrm{Q}
$$

De Morgan's laws

$$
\neg\left(\mathrm{P}^{\wedge} \mathrm{Q}\right) \Leftrightarrow \neg \mathrm{P} \vee \neg \mathrm{Q}
$$

$(\mathrm{P} \vee \mathrm{Q}) \Leftrightarrow(\mathrm{Q} \vee \mathrm{P})$
$\left(P^{\wedge} Q\right) \Leftrightarrow\left(Q^{\wedge} P\right)$
$P^{\wedge}\left(Q^{\wedge} R\right) \Leftrightarrow\left(P^{\wedge} Q\right)^{\wedge} R$
$P \vee(Q \vee R) \Leftrightarrow(P \vee Q) \vee R$

Commutative Laws

Associative Laws

Laws of Logic....

$\& \mathrm{P}^{\wedge}(\mathrm{Q} \vee \mathrm{R}) \Leftrightarrow\left(\mathrm{P}^{\wedge} \mathrm{Q}\right) \vee\left(\mathrm{P}^{\wedge} \mathrm{R}\right)$ $P \vee\left(Q^{\wedge} R\right) \Leftrightarrow(P \vee Q)^{\wedge}(P \vee R)$
$\left(P^{\wedge} P\right) \Leftrightarrow P$
$(\mathrm{P} \vee \mathrm{P}) \Leftrightarrow \mathrm{P}$
$(\mathrm{P} \subset \mathrm{F}) \Leftrightarrow \mathrm{P}$
$\left(P^{\wedge} T^{\prime}\right) \Leftrightarrow P$
$(\mathrm{P} \vee \neg \mathrm{P}) \Leftrightarrow \mathrm{T}$
$\left(P^{\wedge} \wedge \neg P\right) \Leftrightarrow F$

Distributive Laws

Idempotent Laws

Identity Laws

Inverse Laws

Laws of Logic...

* $\left(\mathrm{P}_{\mathrm{v}} \mathrm{T}^{\prime}\right) \Leftrightarrow \mathrm{T}$
$\otimes\left(P^{\wedge} \mathrm{F}\right) \Leftrightarrow \mathrm{F}$
$* P v\left(P^{\wedge} Q\right) \Leftrightarrow P$
$\& \mathrm{P}^{\wedge}(\mathrm{P} \vee \mathrm{Q}) \Leftrightarrow \mathrm{P}$

Domination Laws

Absorption Laws
$\mathrm{P} \rightarrow \mathrm{Q} \Leftrightarrow \neg \mathrm{P}$ v Q

Exercise Problems

Simplify the following compound proposition using the laws of logic:

1. $(p \vee q) \wedge \neg\{(\neg p) \vee q\}$
i)
i) $(p \vee q) \wedge \neg\{(\neg p) \vee q\}$
$=(p \vee q) \wedge\{\neg \neg(p) \wedge \neg q\}$ De Morgan's law
$=(p \vee q) \wedge(p \wedge \neg q)$. Law of donble negation
$=[(p \vee q) \cdot \wedge p] \cdot \wedge(\neg q)$ Association Law.
$=(p \wedge(p \vee q)) \wedge \neg q$ Commutative law.
$=p \wedge \neg q$ Absorption Law.

Exercise Problems
2. Prove that $(p \vee q) \wedge \neg(\neg p \wedge q) \Leftrightarrow p$
2) Prove than

$$
\begin{aligned}
& \text { 2) }
\end{aligned} \begin{aligned}
& (p \vee \vee) \wedge p \\
= & (p \vee q) \wedge[\neg(\neg p) \vee \neg q] \text { Demorgan'slav } \\
= & (p \vee q) \wedge(p \vee \neg q) \quad \text { Law of double } \\
= & p \vee(q \wedge \neg \neg) \quad \text { negation } \\
= & p \vee\left(F_{0}\right) \quad \text { Distribution law } \\
= & p \vee F_{0} \\
= & p
\end{aligned}
$$

Exercise Problems
3. Prove that $\neg[\neg\{(p \vee q) \wedge r\} \vee \neg q] \Leftrightarrow q \wedge r$

$$
=P
$$

$$
\begin{aligned}
& \text { 3) P.T. } \\
& \neg[\neg\{(p \vee q) \wedge r\} \vee \neg q] \Longleftrightarrow q \wedge r . \\
& =\Rightarrow A\{(p \vee q) \wedge r\} \wedge A A q \\
& =(p \vee q) \wedge r \wedge q \\
& =(p \vee q) \wedge q \wedge r . \\
& =\quad \underline{q} \wedge r
\end{aligned}
$$

Exercise Problems

38
4. $[p \vee q \vee(\neg p \wedge \neg q \wedge r)] \Longleftrightarrow(p \vee q \vee r)$
5. $(p \vee q) \rightarrow r \Leftrightarrow(p \rightarrow r) \wedge(q \rightarrow r)$
6. $(p \vee q) \rightarrow(q \rightarrow q)$ is tantology
7. $(7 p \vee q) \wedge(p \wedge(p \wedge q) \Longleftrightarrow(p \wedge q)$

Exercise Problems
prove that:-

$$
\begin{aligned}
& \text { Prove that:- } \\
& {[(P \vee Q) \wedge \neg\{\neg P \wedge(\neg Q \vee \neg R)\}] \vee} \\
& (\neg P \wedge \neg Q) \vee(\neg P \wedge \neg R) \text { is tantologry }
\end{aligned}
$$

Exercise Problem :

- Give reason for each step in the following simplifications of the compound statement.

$$
\begin{aligned}
& \text { (b) } \quad(p \rightarrow q) \wedge[\neg q \wedge(r \vee \neg q)] \\
& \Leftrightarrow \quad(p \rightarrow q) \wedge \neg q \\
& \Leftrightarrow \quad(\neg p \vee q) \wedge \neg q \\
& \Leftrightarrow \quad \neg q \wedge(\neg p \vee q) \\
& \Leftrightarrow \quad(\neg q \wedge \neg p) \vee(\neg q \wedge q) \\
& \Leftrightarrow \quad(\neg q \wedge \neg p) \vee F_{0} \\
& \Leftrightarrow \quad \neg q \wedge \neg p \\
& \Leftrightarrow \quad \neg(q \vee p)
\end{aligned}
$$

Application to Switching Networks

- A switching network is made up of wires and switches connecting two terminals say T1 and T2.
- In such a network, each switch is open (so no current flows through it) or closed(so that current flows through it).
- If a switch is open, we assign the symbol 0 to it and if it closed we assign 1.

Switching Networks...

- There is a close analog between switches and their states and proposition and their truth values.

- This shows a network with only one switch p, current flows from terminal T1 to T2 only if switch p is closed. i, e if p is 1

Switching Networks...

- This is a parallel network consisting of two switches p and q in which the current flows from T1 to T2 if either p or q or both are closed.
- Therefore this network can be represented by p $\mathrm{q} q$

Switching Networks...

- This is a series network consisting of two switches p and q in which the current flows from the terminal T1 to T 2 only if both the switches p and q are closed.
- Therefore this network ca n be represented by $p \wedge q$.

Switching Networks..

- Any switching network is a combination of any of these three types of networks.
- By applying the laws of logic on switching network, we can obtain a new network which are equivalent to the given network, may be with fewer number of switches

Examples:

Simplify the switching network shown below:

The above network can be represented by

$$
(q \vee p \vee \neg q) \wedge r
$$

Solution

$(q \vee p \vee \neg q) \wedge r$
 $(\mathrm{q} v \neg \mathrm{q} \vee \mathrm{p}) \wedge \mathrm{r}$
 $T \wedge r$
 commutative Law
 Inverse Law
 Identity Law
 r

- This shows that the given network with 4 switches is equivalent to a network that contains only one switch.

T1 \qquad r \qquad T2

Example 2...

- Simplify the network shown below

- $[p \vee(p \wedge q) v(p \wedge q \wedge \neg r)] \wedge[(p \wedge r \wedge t) v t]$
$40 \underbrace{[p \vee(p \wedge q) \vee(p \wedge q \wedge \neg q)}_{x}] \wedge[\underbrace{[p \wedge \varepsilon \wedge t) \vee t}_{y}]$
Consider the expression x.

$$
\begin{array}{rl}
& {[p \vee(p \wedge q) \vee(p \wedge q \wedge \neg r]} \\
= & p \vee(p \wedge q) \text { Absorption Law. } \\
=P & p \text { Absorption Law. }
\end{array}
$$

Consider y : -

$$
\begin{aligned}
& {[(p \wedge r \wedge t) \vee t] } \\
&=t \vee(t \wedge(p \wedge r)) \text { - Unis commutative \& } \\
&=t \text { associative law. } \\
& \text { - Absorption law. }
\end{aligned}
$$

After simplification.

$$
=P \wedge t
$$

\qquad
therefore the Number of switches has been rechuced from 10 to 2 switches after Simplaificmithon.

Example 3 \& 4

Solution 3

Intion 3:

$$
\begin{aligned}
& (p \vee q) \wedge(p \vee \neg q) \\
= & p \vee(q \wedge \neg q) \\
= & - \text { Distsibntion Law } \\
= & - \text { Inverse law. } \\
= & - \text { Iclublily Law. }
\end{aligned}
$$

$T!$ \qquad T_{2}

Solution 4:
union 4:

$$
\begin{aligned}
& (\neg p \wedge \neg q \wedge r) \vee(p \wedge r) \vee(q \wedge r) \\
& =(\neg p \wedge \neg q \wedge r) \vee(r \wedge(p \vee q))-c \text { chistribntio } \\
& \text { Law. } \\
& r \wedge(\neg p \wedge \neg q) \vee(p \vee q) \text { - chistribution } \\
& \text { Law } \\
& r \wedge(\neg(p \vee q) \vee(p \vee q)-\text { megationadaw } \\
& \text { Demorgan's la } \\
& \text { - Inverse law. } \\
& \text { - Idenhbí Law. } \\
& =r \\
& \text { No, of switches } \\
& \text { rechlced to } 1 \\
& \text { from } 7 \text {. }
\end{aligned}
$$

Try It Yourself

Duality

- Let s be a statement. If s contains no logical connectives other than Λ and v , then the dual of s, denoted s^{\prime}, is the statement obtained from s by replacing each occurrence of v by Λ and Λ by V respectively, and each occurrence of T_{0} and F_{0} by F_{0} and T_{0}, respectively.)
- Eg. $\mathrm{s}:(\mathrm{p} \wedge \neg \mathrm{q}) \mathrm{v}\left(\mathrm{r} \wedge T_{0}\right)$

$$
s^{d}:(p \vee \neg q) \wedge\left(r \vee F_{0}\right)
$$

$$
\text { 1. } \begin{aligned}
& p \rightarrow q \\
= & {[\neg p \vee q]^{d} } \\
= & -p \wedge \wedge q
\end{aligned} \text { 2. } \begin{aligned}
&(p \rightarrow q) \rightarrow r \\
&= \neg(p \rightarrow q) \vee r \\
&= \neg(\neg p \vee q) \vee r \\
&= {[p \wedge \neg q \vee r]^{d} } \\
&= p \vee \neg q \wedge r
\end{aligned}
$$

Principle of Duality

Let s and t be the statements that contain no logical connectives other than V and Λ. If $s \Leftrightarrow t$
then $\mathrm{s}^{\mathrm{d}} \Leftrightarrow \mathrm{t}^{\mathrm{d}}$

Example

Verify the principle of duality for the following logical equivalence.

$$
\begin{aligned}
& 38 \\
& {[\neg(p \sim q) \rightarrow \neg p \vee(\neg p \vee q)] \Longleftrightarrow(\neg p \vee q)} \\
& \text { Let } u=[\neg(p \wedge q) \Rightarrow \rightarrow p \vee(\longrightarrow p \vee q)] \text { - Emplicathoinlono } \\
& =[H(x(p \wedge q)) \vee \rightarrow p \vee(\neg p \vee q)] \text { - law of donbl } \\
& =(p \wedge q) \vee \neg p \vee(\neg p \vee q) \text { - Aesuciativelaw. } \\
& =(p \wedge q) \vee(\neg p \vee \neg p) \vee q-\text { Idempotent law } \\
& =(p \wedge q) \vee(\neg p \vee q) \text { - Chistribontivelaw } \\
& =[(p \wedge q) \vee \neg p] \vee((p \wedge q) \vee q) \text { - Absouptronilau } \\
& =[(p \wedge q) v \neg p] \vee q \quad-\text { distributivelav } \\
& =[(p \vee \neg p) \wedge(q \vee \neg p)] \vee q \in \text { Smvenere law. } \\
& =[\text { To } \wedge(q \vee \neg p] \vee q \quad \text { I dentich Law. } \\
& =(q \vee \neg p) \vee q \\
& \leftarrow \text { Cossociatiren law. } \\
& =q \vee q \vee \neg p \text { - Idempotert law. } \\
& =q \vee \vee p . \\
& =7 p \vee q \\
& \text { - Commitative Lau } \\
& u^{d}=[\neg p \vee q]^{d}=\neg p \wedge q . \\
& V^{d}=[\neg p \vee q]^{d}=\square p a q .
\end{aligned}
$$

Prove than $(\neg p \vee q) \wedge(p \wedge(p \wedge q) \Longleftrightarrow p \wedge q$

$$
\begin{aligned}
& \text { if } u=(\neg p \vee q) \wedge((p \wedge p) \wedge q)) \text {-associative law } \\
& =(\neg p \vee q) \wedge((p \wedge p) \wedge q)) \text { - Idempotent lan } \\
& =(\neg p \vee q) \wedge(p \wedge q)-\text { chistribntive law. } \\
& =(f p \vee q) \wedge p) \wedge((\neg p \otimes q) \wedge q)-A b s \text { suphion } \\
& =((\neg p \vee q) \wedge p) \wedge q \\
& =[([p \wedge p) \vee(q \wedge p)] \wedge q \text { - Invenselaw } \\
& =\left[F_{0} \vee(q \wedge p)\right] \wedge q \text {. - Identherlas } \\
& \begin{array}{ll}
=(q \wedge p) n q & \text { - associative law }
\end{array} \\
& =(q \wedge q \wedge p) \\
& =q^{n} p \text {. } \\
& u=p \wedge q \\
& u^{d}=[p \sim q]^{d}=p \vee q: \quad \therefore \quad u^{d} \Leftrightarrow v^{d} . \\
& v=[\bar{p} \wedge q]^{d} \quad \alpha c^{d}=\overline{p v} q
\end{aligned}
$$

Other Connectives : $\uparrow \downarrow$

For any two propositions p and q , the DeMorgan's law states that

$$
\begin{aligned}
& \neg(p \wedge q) \Leftrightarrow \neg p \vee \neg q \text { and } \\
& \neg(p \vee q) \Leftrightarrow \neg p \wedge \neg q
\end{aligned}
$$

- The compound proposition $\neg(\mathrm{p} \wedge \mathrm{q})$ is read as "Not of p and q is also denoted by ($p \uparrow q$)
- The compound proposition $\neg(p \vee q)$ is read as "Not of p or $q^{\prime \prime}$ and is also denoted by ($p \downarrow q$)
- The symbol \uparrow is called the NAND connective and is the combination or not and and.
- The symbol \downarrow is call the NOR connective and is the combination of not and or

p	q	$\neg \mathrm{p}$	$\neg \mathrm{q}$	$\neg \mathrm{pv} \neg \mathrm{q}$	$\neg(\mathrm{p} \wedge \mathrm{q})$ \uparrow	
0	0	1	1	1	1	
0	1	1	0	1	1	
1	0	0	1	1	1	
1	1	0	0	0	0	

Thus, $(\mathrm{p} \uparrow \mathrm{q}) \Leftrightarrow \neg(\mathrm{p} \wedge \mathrm{q}) \Leftrightarrow \neg \mathrm{p} \vee \neg \mathrm{q} \quad$ and

$$
(\mathrm{p} \downarrow \mathrm{q}) \Leftrightarrow \neg(\mathrm{p} \vee \mathrm{q}) \Leftrightarrow \neg \mathrm{p} \wedge \neg \mathrm{q}
$$

Exercise problems:
For any proposition p and q , prove the following

1. $\neg(\mathrm{p} \downarrow \mathrm{q}) \Leftrightarrow \neg \mathrm{p} \uparrow \neg \mathrm{q}$

$$
\begin{aligned}
& \neg(p \downarrow q) \rightleftarrows(\neg p \pi \neg q) \\
& =\neg(\neg(p \vee q)) \\
& =\neg(\neg p \wedge \neg q) \\
& =\neg \neg \uparrow \neg q \\
& \therefore \neg(p \downarrow q) \rightleftarrows \neg p \Re \neg q
\end{aligned}
$$

2. $\neg(\mathrm{p} \uparrow \mathrm{q}) \Leftrightarrow \neg \mathrm{p} \downarrow \neg \mathrm{q}$

$$
\begin{aligned}
& \neg(p \uparrow q) \Leftrightarrow \neg p \downarrow \neg q \\
& =\neg(\neg(p \wedge q)) \leftrightarrow \text { demorgai } \\
& =\neg(\neg p \vee \neg q) \\
& =\neg p \downarrow \neg q \\
& \therefore \neg(p \uparrow q) \Longleftrightarrow \neg p \downarrow \neg q
\end{aligned}
$$

Are \uparrow and \downarrow Associative ?

Is $\mathrm{p} \uparrow(\mathrm{q} \uparrow \mathrm{r}) \Leftrightarrow(\mathrm{p} \uparrow \mathrm{q}) \uparrow \mathrm{r} ?$

No they are not .

No!!

$$
\begin{aligned}
& 34 \uparrow(q \uparrow r) \\
& =p \uparrow(\neg(q \wedge r)) \\
& =\neg(p \wedge(\neg(q \wedge r)))-D M \\
& =\neg p \vee \neg(\neg(q \wedge r)) \\
& =\neg \neg \vee(q \wedge r)
\end{aligned}
$$

$$
\begin{aligned}
& (p \not p q) \uparrow r: \\
& =\neg(p \wedge q) \uparrow r \\
& =\pi((\pi \wedge p \wedge q) \wedge r) \\
& =(p \wedge q) \vee \neg r .
\end{aligned}
$$

Since $P \uparrow(q \uparrow r) \nLeftarrow \cdot(p \pi q) \uparrow r$. hence \uparrow dis not associative.
Similarly with \downarrow (NOR).

Exercise problems:

Express the following propositions in terms of only NAND and NOR connectives

1. $\neg \mathrm{p}$
2. $\mathrm{p} \wedge \mathrm{q}$
3. p v q
4. $\mathrm{p} \rightarrow \mathrm{q}$
5. Prove that $(p \uparrow q) \Leftrightarrow(q \uparrow p)$, and $(p \downarrow q) \Leftrightarrow(q \downarrow p)$.
6. Prove that $[p \rightarrow(\neg p \rightarrow q)] \Leftrightarrow[p \uparrow(p \downarrow q)]$.
7. Prove the following:
(i) $(p \uparrow q) \Leftrightarrow(\neg p \wedge q) \vee(p \wedge \neg q) \vee(\neg p \wedge \neg q)$.
(ii) $(p \downarrow q) \Leftrightarrow(\neg p \vee q) \wedge(p \vee \neg q) \wedge(\neg p \vee \neg q)$.

Converse, Inverse and Contrapositive: Logical Implication

Consider a conditional $p \rightarrow q$ then,

1. $q \rightarrow p$ is called the Converse of $p \rightarrow q$
2. $\neg p \rightarrow \neg \mathrm{q}$ is called the Inverse of $p \rightarrow q$
3. $\neg q \rightarrow \neg p$ is called the Contrapositive of $p \rightarrow q$

State conditional, converse, inverse and contrapositive for the following primitive propositions
p : It rains
q: the game will be cancelled

1. $p \rightarrow q$: If it rains, then the game will be cancelled.
2. $q-p$: If the game is cancelled, then it has rained.
3. $-\neg p-\neg_{\mathrm{q}}$: If it doesnot rain, then the game will not be cancelled.
${ }^{1 q}-\rightarrow \mathrm{p}$: If the game is not cancelled, then it has not rained.

Truth Table :

p	q	$\neg \mathrm{p}$	$\neg \mathrm{q}$	$\mathrm{p} \rightarrow \mathrm{q}$	$\mathrm{q} \rightarrow \mathrm{p}$	$\neg \mathrm{p} \rightarrow \neg \mathrm{q}$	$\neg \mathrm{q} \rightarrow \neg \mathrm{p}$
0	0	1	1	1	1	1	1
0	1	1	0	1	0		0
1	0	0	1	0	1	1	1
1	1	0	0	1	1		1

From the above Truth Table we have the following important results:

1. The conditional and Contrapositive are logically equivalent for any proposition p and q

$$
(\mathrm{p} \rightarrow \mathrm{q}) \Leftrightarrow(\neg \mathrm{q} \rightarrow \neg \mathrm{p})
$$

2. The converse and Inverse of a conditional are logically equivalent for any proposition p and q .

$$
\begin{aligned}
& (\mathrm{q} \rightarrow \mathrm{p}) \Leftrightarrow(\neg \mathrm{p} \rightarrow \neg \mathrm{q}) \\
& (\mathrm{p} \rightarrow \mathrm{q}) \nRightarrow(\mathrm{q} \rightarrow \mathrm{p}) \\
& (\neg \mathrm{p} \rightarrow \neg \mathrm{q}) \Leftrightarrow(\neg \mathrm{q} \rightarrow \neg \mathrm{p})
\end{aligned}
$$

And also

Logical Implication :

Consider the implication $\mathrm{p} \rightarrow \mathrm{q}$, for any two propositions p and q.
$\mathrm{p}: 6$ is a multiple of 2
$\mathrm{q}: 3$ is a prime number

Here $p \rightarrow q$ means " If 6 is a multiple of 2 , then 3 is a prime number". Here since p is true and q is also true, $\mathrm{p} \rightarrow \mathrm{q}$ is also true, but this $\mathrm{p} \rightarrow \mathrm{q}$ does not make any sense because there no consistency in the statement $\mathrm{p} \rightarrow \mathrm{q}$ (though it is logical true)

- Hence we are interested in conditional $p \rightarrow q$ where p and q are related in some way, so that the truth value of q depends upon truth value of p or vice verse. Such conditional are called Hypotherical staternents or Implicarive statements.
- When a hypothetical statement $\mathrm{p} \rightarrow \mathrm{q}$ is such that q is true whenever p is true, then we say that p logically implies q and symbolically written as $\mathrm{p} \Rightarrow \mathrm{q}$.
- When a hypothetical statement $\mathrm{p} \rightarrow \mathrm{q}$ is such that q is is not necessarily true whenever p is true, then we say that p does not logically implies q and symbolically written as $\mathrm{p} \Rightarrow \mathrm{q}$.

Necessary and Sufficient Conditions :

Suppose that $p \Rightarrow q$, then in order that q may be true if is sufficient that p is true, also if p is true, then it necessary that q is true.
i.e For $p \Rightarrow q \quad p$ is sufficient for q
q is necessary for p

Problems:

Using the truth table prove the following logical implication.

1. $[p \wedge(p \rightarrow q)] \Rightarrow q$

p	q	$p \rightarrow q$	$p \wedge(p \rightarrow q)$
0	0	1	0
0	1	1	0
1	0	0	0
1	1	1	1

2. $[(\mathrm{p} \rightarrow \mathrm{q}) \wedge \neg \mathrm{q}] \Rightarrow \neg \mathrm{q}$

p	q	$\mathrm{p} \rightarrow \mathbf{q}$	$\neg \mathrm{q}$	$\mathrm{p} \rightarrow \mathbf{q}) \boldsymbol{\wedge} \neg \mathbf{q}$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	1	0	0

3. The following are 3 valid arguments. Establish the validity of each by the means of Truth Table. In each case, determine which rows of the table are crucial for accessing the validity of the argument and which rows can be ignored.
a. $[p \wedge(p \rightarrow q) \wedge r] \Rightarrow[(p \vee q) \rightarrow r]$
(a)
(b)

p	q	r	$p \rightarrow q$	(a)	p v q	(b)
0	0	0	1	0	0	1
0	0	1	1	0	0	1
0	1	0	1	0	1	0
0	1	1	1	0	1	1
1	0	0	0	0	1	0
1	0	1	0	0	1	1
1	1	0	1	0	1	0
1	1	1	1	1	1	1

b. $\quad[[(p \wedge q) \rightarrow r] \wedge \neg q \wedge(p \rightarrow r)] \Rightarrow(\neg p \vee \neg q)$
c. $[[p \vee(q \vee r)] \wedge \neg q] \Rightarrow(p \vee r)$

Solution b: Rows 1,2 and 6
Solution c : Rows 2,5 and 6

Rules of Inferences

Establishing the validity of an argument by constructing the Truth Table is tedious method for the following reasons.

- Table size depends on the no. of primitives
- For establishing the validity we need only those rows whose truth value is true.

Solution : Truth Table method can be avoided for proving the validity of an argument by using the technique called Rules of Inference.
Rules of Inference are already valid arguments which can be used as templates for establishing the validity of other arguments

Rules of Inferences

Logical Implication: Rules of Inference

an argument: $\left(p_{1} \wedge p_{2} \wedge \cdots \wedge p_{n}\right) \rightarrow q$
premises
conclusion
is a valid argument
$\longleftrightarrow \quad\left(p_{1} \wedge p_{2} \wedge \cdots \wedge p_{n}\right) \rightarrow q \quad$ is a tautology

Qule 1: Modus ponens / rule of detachment/method of affirming

In symbolic form of this rule is expressed by the logical implication.

$$
[p \wedge(p \rightarrow q)] \Rightarrow q \quad[\text { Symbolic form }]
$$

Can also be written is tabular form as below
p
$\mathrm{p} \rightarrow \mathrm{q}$
$\therefore \mathrm{q}$
This means that if p is true and $\mathrm{p} \rightarrow \mathrm{q}$ is true, then q must be true

Rule 1 , can be verified using the truth table

p	q	$p \rightarrow q$	$p \wedge p \rightarrow q$	$[p \wedge p \rightarrow q] \rightarrow q$
0	0	1	0	1
0	1	1	0	1
1	0	0	0	1
1	1	1	1	1

Since $[p \wedge p \rightarrow q] \rightarrow q$ is a Tautology, therefore its proved

Exarnple 1: Modus Ponens

Check the validity of the following argument.

p1 : If Sachin bits a century, then be gets a free car. p2: Sacbin bits a century.
\therefore Sacbin gets a free car
Let
p: Sachin hits a century
q: Sachin gets a free car
Using this primitives we can write the arguments
$\mathrm{p} \rightarrow \mathrm{q}$
P
$\therefore \mathrm{q} \quad$ It's a valid argument , as per Modus Ponens Rules

Exarnple 2: Modus Ponens

P1 : If Sacbin bits a century, then be gets a free care
P2 : Sacbin does not get a free car
\therefore Sacbin bas not bit a century
Let
p : Sachin hits a century
q: Sachin gets a free car
Using this primitives we can write the arguments

$$
\mathrm{p} \rightarrow \mathrm{q}
$$

$\therefore \neg \mathrm{p}$
It's a valid argument ,as per Modus Ponens
Rules

Example 3: Modus Ponens

P1: If Sacbin bits a century, then be gets a free care
P2 : Sachin does get a free car
\therefore Sacbin bas bit a century
Let
p : Sachin hits a century
q: Sachin gets a free car
Using this primitives we can write the arguments

$$
\mathrm{p} \rightarrow \mathrm{q}
$$

$[(p \rightarrow q) \wedge q] \rightarrow p$ is not a tautology, hence not valid

Exarnple 3: Modus Ponens
P1: If Sacbin bits a century, then be gets a free care
P2 : Sachin does get a free car
\therefore Sacbin bas bit a century
Let
p : Sachin hits a century
q: Sachin gets a free car
Using this primitives we can write the arguments
$p \rightarrow q$

$[(p \rightarrow q) \wedge q] \rightarrow p$ is not a tautology, hence not valid

Rule 2 : Modus Tollens / Method of denying

$$
\begin{aligned}
& {[(\mathrm{p} \rightarrow \mathrm{q}) \wedge \neg \mathrm{q}] \rightarrow \neg \mathrm{p}} \\
& \mathrm{p} \rightarrow \mathrm{q} \\
& \neg \mathrm{q} \\
& \therefore \neg \mathrm{p}
\end{aligned}
$$

Example 1 : Modus Tollens

If I drive to work, then I will arrive tived.
I was not tived when arrived to worke
\therefore I didn't drive to work.

Let
p : I drive to work
$\mathrm{q}: \mathrm{I}$ arrive tired

$$
\mathrm{p} \rightarrow \mathrm{q}
$$

Is a Valid Argurnent

Qule 3 : Rule of Syllogism

$$
[(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r})] \rightarrow(\mathrm{p} \rightarrow \mathrm{r})
$$

$$
\begin{aligned}
& p \rightarrow q \\
& q \rightarrow r \\
& \therefore p \rightarrow r
\end{aligned}
$$

Example 1 : Rule of Syllogism

If I study, then I will not fail in the examination
If I don't fail in the examination, then my father gifts a two wheeler to me.
\therefore If I study, then my father gifts a two wheeler to me.
Let
p : I study
q: I don't fail in the examination
r: my father gits a two wheeler to me.

$$
\mathrm{p} \rightarrow \mathrm{q}
$$

$$
\mathrm{q} \rightarrow \mathrm{r}
$$

$\therefore \mathrm{p} \rightarrow \mathrm{r}$
It's a valid argument.

Qixarnple 2: Syllogism

If Ravi goes out with friends, then be will not study.
If Ravi does not study, bis father becomes angry
His father is not angry
\therefore Ravi bas not gone out with friends.
Let
p: Ravi goes out with friends
q : Ravi does not study
r: His father gets angry

Problems 1:

P1 : if I study, I mill not fail in the examination.
P2: If I don't watch to in the evening, I will study.
P3: I failed in the examination.
C : I must bave watched to in the evening

Let the primitives be
p:I study
q: I failed in the examination
r: I watch tv in the evening

Then the given arguments can be read as
$\mathrm{p} \rightarrow \neg \mathrm{q}$

$$
\neg_{\mathrm{r}} \rightarrow \mathrm{p}
$$

Therefore r

$$
3 \delta(p \rightarrow \neg q) \wedge(\neg r \rightarrow p) \wedge q] \rightarrow r
$$

This argument can be proved as follows:-
i)

$$
\begin{aligned}
p \rightarrow \neg q \Leftrightarrow & \Rightarrow A q \rightarrow \neg p \\
& =q \rightarrow \neg p
\end{aligned}
$$

\because Conchitional \& contrapositive logically ea,
Similarly
ii)

$$
\begin{aligned}
& \neg r \rightarrow p \Longleftrightarrow \neg p \rightarrow \neg r \\
&=7 p \rightarrow r .
\end{aligned}
$$

Therefore the argument can be written as. $q \rightarrow \neg p \quad\{$ Rule of syllogism. $\neg p \rightarrow r . \quad\}$. R

$$
=\frac{q}{q \rightarrow r} . \quad(\text { syllog} \cdot \sin)
$$

$$
\frac{q}{\because, r}
$$

(Mocha pones)
\therefore This is a reatid argument.

Problem 2:

I will get grade A in this course or I will not graduate.
If I don't not graduate, then I will join army
I got grade A
Therefore I will not join the army
Let the primitives be
p: I get grade A in tis course
q: I graduated
r: I join the army

36 argument. can be written as.

$$
\begin{gathered}
p \vee \neg q \\
\neg q \rightarrow r \\
p \\
\therefore \neg r
\end{gathered}
$$

The above premises can be whiten as.

$$
\left.\begin{array}{l}
\neg p \rightarrow \neg q \\
\neg q \rightarrow r .
\end{array}\right\} \quad \because p \vee \neg q \Leftrightarrow \neg p \rightarrow \neg q
$$

$$
\because 7 r
$$

$$
\rightarrow \underset{p \rightarrow r}{ } \quad \text { (syllogism) }
$$

$$
\frac{p .}{\therefore 7 r}
$$

$7 r \rightarrow p$
(contrapositive)

$$
\frac{P}{\therefore 7 r}
$$

$\operatorname{Since}((7 r \rightarrow p) \wedge p) \rightarrow 7 r$ is mot tautology. \therefore IF not a latid argument.

Problem 3:

Consider the following arguments

1) Rita is baking a cake
2) If Rita is baking a cake, then she is not practicing ber flute
3) If Rite is not practicing ber flute, then ber father will not buy ber a car
4) Therefore Rita's father will not buy ber a carr:

Primitives are:-
P : Rita is baking cake.
q : Rita is practicing her thule-
s: Her father will buy her a car.
The arguments can be written as.
ρ

$$
\begin{aligned}
& p \rightarrow \neg q \\
& \neg q \rightarrow \neg r . \\
& \therefore \neg r
\end{aligned}
$$

validity can be established as follows.

Problem 4:

Show that the following argument is valid (for primitive statements $\mathrm{p}, \mathrm{r}, \mathrm{s}, \mathrm{t}$ and u) and the conclusion $\neg \mathrm{p}$
$p \rightarrow r, r \rightarrow s, t \vee \neg S, \neg t \vee u, \neg u$

Solution :
34 Solution:.

Steps

1) $p \rightarrow r$.
2) $r \rightarrow s$
3) $P \rightarrow s$
4) $t \vee \neg s$
5) $7 s \vee t$
6) $5 \rightarrow t$
7) $p \rightarrow t$
8) Atvu
9) $\quad t \rightarrow u$.
10) $p \rightarrow u$
iI). $\neg u$
11) $\therefore 7 p$

- Reasons.
premise
premise.
from $1 \& 2$ \& Syllogism.
permise
commutative law. on step 4
- implication law on step 5
from step $3 \& 6$ \&'syllogism.
premise.
Apply implication rule on step 8 from step $7 \& 9 \&$ syllogism.
premises.
from step 10 \& 11 \& Mocks toll
\therefore It sa Valid argument.

Prule 4 : Rule of Conjunction

- This rule arises from the fact that if p and q are true statements then $\mathrm{p} \wedge \mathrm{q}$ is also a true statement.
- The statements p and q may occur in the development of an argument as a given premises or may be the result that are derived from the premises in the earlier arguments.
- Under these circumstances the two statements p and q can be combined into their conjunction $\mathrm{p} \wedge \mathrm{q}$, and this new statement can be used in later steps .
- Rule of Conjunction can be written as

Problem on application of Rule of Conjunction
Test the validity of the following argument.
$p \wedge q$

$$
\mathrm{p} \longrightarrow(\mathrm{q} \rightarrow \mathrm{r})
$$

Solution:-

1) $p \wedge q$
2) $p \rightarrow(q \rightarrow r)$
3) P
4) $q \rightarrow r$
5) q
6) $\therefore r$.

CS
Scanned with CamScanner

Reasons
premise
premise.
from step 1\& Rule of Conjunction
from step $2 \& 3 \&$ Rule of mons ponens. team step 1 \& Rule of conjunction. feom step 4 \& s porn

Rule 5 : Rule of Disjunctive Syllogism

$$
[(p \vee q) \Lambda \neg p] \rightarrow q
$$

We know than $p \vee q=\neg p \rightarrow q$
$\left.\therefore \quad \begin{array}{ll} & \rightarrow p \\ & \\ & \therefore q \\ \therefore q & \text { (Modes pones) }\end{array}\right)$

Rule 6 : Rule of Contradiction
Let ' p ' denote an arbitrary statement, and F_{0} a contradiction, then

$$
\left(\neg \mathrm{p} \rightarrow \mathrm{~F}_{0}\right) \rightarrow \mathrm{p} \quad \text { i.e } \quad \frac{\neg \mathrm{p} \rightarrow \mathrm{~F}_{0}}{\mathrm{p}}
$$

Rule 7 : Rule of Conjuctive Simplication

$$
[(p \wedge q)] \rightarrow p \quad \text { i.e } \quad p \wedge q
$$

p

Rule 3 : Rule of Disjunctive Amplification

$$
p \rightarrow(p \vee q) \quad \text { i.e } \frac{p}{p V q}
$$

Problems :

1. Demonstrate the validity of the following argument

$$
\begin{aligned}
\mathrm{p} & \rightarrow \mathrm{r} \\
\neg \mathrm{p} & \rightarrow \mathrm{q} \\
\mathrm{q} & \rightarrow \mathrm{~s} \\
\neg_{\mathrm{r}} & \rightarrow \mathrm{~s}
\end{aligned}
$$

32 problems 1: Solution
steps

1. $p \rightarrow r$
2. $7 r \rightarrow 7 p$
3. $7 p \rightarrow q$.
4. $7 r \rightarrow q$
5. $q \rightarrow s$
$6 \ldots \neg r \rightarrow s$

Reasons
premise.
from step 1 and courtiagositive.
premise.
from $2 \& 3$ \& Rule of syllogism.
premise.
from 4 \& 5 syllogism.
2. Establish the validity of the argument

$$
\mathrm{p} \rightarrow \mathrm{q}
$$

$$
\mathrm{q} \rightarrow(\mathrm{r} \wedge \mathrm{~s})
$$

$\neg r$ V ($\neg \mathrm{t}$ V u)
$p \wedge t$
U
problem 2
Reasons
steps
premise.
$\dot{\propto}$ 1. $p \rightarrow q$ pecmise.
2. $q \rightarrow(\varepsilon \wedge s)$

Step $4 \& 2$ \& syllogism.
3. $p \rightarrow(r \wedge s)$
premise.
4. $p \wedge t$
fromstep 4 \& Rnle of
5. P conjuction. simplification
6. $r \wedge S$ step 3 \& 5 \& Modus ponens

7 . r Step 6 \& Rnie of Conj simptification
8. Trv (7tvu) premise.
9. (7rv $(7 t) \vee u$.

Step 8 \& associative law.
10. $7(R \wedge t) \vee u$ Step $9 \&$ demorgar's law.
Step 10 \& law of Conjuctive Simphic 11. $7 \& \vee u$.

CS 12 annedevi \rightarrow. 12 mscanner

Show that the following argument is valid
If the band could not play rock music or the refreshments were not delivered on time, then the New year's party would have been cancelled and Alicia would have been angry.
If the party were cancelled, then refunds would be made

No refunds were made
Therefore the band could play rock music.

Reasons

Steps

1) $r \rightarrow t$
2) $\neg t$
3) $7 r$
4) $\neg r v \neg s$
premise
premise.
Feom 122 \& Modus Tollens
From $3 \&$ Rnle of Bisinnctive
Amplifici
5) $\neg(r \wedge s)$ From $4 \& D M L P \Rightarrow p \vee q$
6) $(\neg p \vee \neg q) \rightarrow(r \wedge s)$ premises
7) $\neg(\neg p \vee \neg q)$ From $4 \& 5 \&$ Modus Tollee
8) $\neg \neg(p \wedge q)$
9) $(p \wedge q)$
a) p

Feom 6 \& De'morgan's law.
From 7 \& Law of D onble neyy o
From se law of Conjunctive simplificcition.

CS Scanned-this argument is vatid.

Quanitifier

- A sentence that involves a variable, such as x, cannot be called as a statement.
- These cannot be called as proposition unless the valve of x is specified.
- Eg, $x+2$ is an even integer.
x divides 16 etc.,
- Sentences of this kinds are called as Open Staternents.
- If the open statement contains a variable ' x ' and when we restrict certain allowable choice for this ' x '. These allowable choices are called the Universe or Universe of Discourse for open statement.

Quantifier...

- Open statement containing a variable ' x ' are denoted by $p(x), q(x)$ etc.,
- If U is the universe for the variable x in an open statement $p(x)$ and if $a \in U$, then the proposition got by replacing x by a in $p(x)$ is denoted by $p(a)$.
Eg, $p(5): 5+2$ is an even integer (false)

$$
\neg \mathrm{p}(7): 7+2 \text { is not a even integer (True) }
$$

- $q(x, y)$ is used to represent an open statement that contain two variables.
$q(x, y)$: "The numbers $y+2, x-y$ and $x+2 y$ are even integers" $\mathrm{q}(4,2)$: "The numbers 4,2 and 8 are even integers" (True)
$\mathrm{q}(4,1)$: "The numbers 3,3 and 6 are even integers" (False)

Quantifier...

- In the examples of $\mathrm{p}(\mathrm{x})$ and $\mathrm{q}(\mathrm{x}, \mathrm{y})$ some substitutions results in true statements and others results in false statement.
- Therefore we can say

For some $x, p(x)$ is True
For some $x, y, q(x, y)$ is True
Similarly,
For some $x, \neg p(x)$ is False For some $x, y, \neg q(x, y)$ is False

- The phrases "For some x " and "For some x, y " are said to quantify the open statements $\mathrm{p}(\mathrm{x})$ and $\mathrm{q}(\mathrm{x}, \mathrm{y})$ respectively

Quantifier...

- There are two type of Quantifiers
\& Existential Quantifiers (\exists)
* Universal Quantifiers (\forall)

Existential Quantifier (\exists)

- The phrase "For some" are called existential quantifiers, which can also be expressed as "For at least one x " or "There exists an x such that" etc.,
- This quantifier is symbolically denoted as $\exists x$, hence the statement "for some $x, p(x)$ " can be written as $\exists x p(x)$
- Similarly, $\exists x \exists y$ q (x, y) or $\exists x, y, q 1(x, y)$

Quantifier...

Universal Quantifiers (\forall)

- Are denoted by $\forall x$ and is read as "For all x " or "For any x " or "For each x " or "For every x "

Eg, $p(x)$: "The number $x+2$ is even integer"

- The above open statement can be to quantified statement $\forall \mathrm{x}, \mathrm{p}(\mathrm{x})$ is a false statement".

Eg., $r(x):$ " $2 x$ is an even integer"

- Then the quantified statement for the above open statement $\forall x, r(x)$ is a True statement.
- Note that the quantified statement $\exists \mathrm{x} r(\mathrm{x})$ is also a True Statement, but $\forall \mathrm{x}, \neg \mathfrak{r}(\mathrm{x})$ and $\exists \mathrm{x}, \neg \mathfrak{r}(\mathrm{x})$ is False

Quantifier...

- The variable x in $p(x)$ is called as Free variable $(\forall x)$
- The variable x in $r(x)$ is called as Bounded Variable ($\exists \mathrm{x})$

Quantifier and Logical Connectives

Compound open statements can be formed using logical connectives.

$$
\text { Eg, } \neg \mathrm{p}(\mathrm{x}), \mathrm{p}(\mathrm{x}) \wedge \mathrm{q}(\mathrm{x}), \mathrm{p}(\mathrm{x}) \rightarrow \mathrm{q}(\mathrm{x})
$$

Example :
Suppose that the Universe consists of all integers, consider the following open statements.
$p(x): x \leq 3$
$\mathrm{q}(\mathrm{x}): x+1$ is odd
$\mathrm{r}(\mathrm{x}): \mathrm{x}>0$

Quantifier and Logical Connectives...

Write the Truth value for the following.

1) $p(2)$
ii) $\neg \mathrm{q}(4)$
iii) $p(-1) \wedge q(1)$
iv) $\neg \mathrm{p}(3) \mathrm{Vr}(0)$
v) $p(0) \rightarrow q(0)$
vi) $p(1) \leftrightarrow \neg q(2)$
vii) $p(4) \vee[q(1) \wedge r(2)]$
viiii) $p(2) \wedge[q(0) \vee \neg r(2)]$

Solution :

i. True
ii. False
iiii. False
iv. False
v. True
vi. False
viii. False
viiii.'True

Converse, Inverse and Contrapositive for open statements

Definition : For the given open statements $p(x)$ and $q(x)$ defined for prescribed universe and the universally quantified statement $\forall x[p(x) \rightarrow q(x)]$, then
$\forall \mathrm{x}[\neg \mathrm{q}(\mathrm{x}) \rightarrow \neg \mathrm{p}(\mathrm{x})]$ is the Contrapositive
$\forall \mathrm{x}[\mathrm{q}(\mathrm{x}) \rightarrow \mathrm{p}(\mathrm{x})] \quad$ is the Converse
$\forall \mathrm{x}[\neg \mathrm{p}(\mathrm{x}) \rightarrow \neg \mathrm{q}(\mathrm{x})]$ is the Inverse

Exercise Problems:

- Let $\mathrm{p}(\mathrm{x}), \mathrm{q}(\mathrm{x})$ and $\mathrm{r}(\mathrm{x})$ denote the following open statement

$$
\begin{aligned}
& p(x): x^{2}-7 x+10=0 \\
& q(x): x^{2}-2 x-3=0 \\
& r(x): x<0
\end{aligned}
$$

Determine the Truth or Falsity of the following statements, when the universe contains only the integers 2 and 5
i) $\forall \mathrm{x}\left[\mathrm{p}(\mathrm{x}) \rightarrow \neg_{\mathrm{r}}(\mathrm{x})\right] \quad$ iii) $\forall \mathrm{x}[\mathrm{p}(\mathrm{x}) \rightarrow \mathrm{r}(\mathrm{x})]$
ii) $\forall \mathrm{x}[\mathrm{q}(\mathrm{x}) \rightarrow \mathrm{r}(\mathrm{x})]$

Solution:
Solution:-
30 i) $\forall x[p(x) \longrightarrow \neg r(x)]$
Universe of dis corse $\{2,5\}$.

$$
\begin{gathered}
\text { consider } x=2 \\
{[p(2) \rightarrow 7 r(2)]} \\
p(x): x^{2}-7 x+10=0 \\
p(2): 2^{2}-7(2)+10=0 \\
4-14+10=0 \\
0=0 . \text { (True) }
\end{gathered}
$$

$$
\begin{aligned}
& r(x): x<0 \\
& r(2): 2<0 . \quad \text { (False. } \\
& \therefore p(2) \rightarrow>r(2) .
\end{aligned}
$$

consider $x=5$.

$$
\begin{aligned}
& \text { side } x=5 \\
& {[p(5) \rightarrow 7 r(5)]} \\
& p(x): x^{2}-7 x+10=0 \\
& p(5): 5^{2}+7(5)+10=0 \\
& : 25+35+10=0 \\
& : D=0 \quad \text { (Tine.) }
\end{aligned}
$$

$\varepsilon(x): x<0$.
$r(5): 5<0$ (False)

$$
\begin{aligned}
& \therefore P(5) \rightarrow 7 \&(5) . \\
& =T \rightarrow T F=T \rightarrow T=\text { Tree. } .
\end{aligned}
$$

Chereforith $\forall x[P(x) \rightarrow 7 r(x)$ is TRU

Truth values of Quantified Statements

- The statement " $\forall x \in S, p(x)$ " is True only when $p(x)$ is true for each $\mathrm{x} \in \mathrm{S}$.
- The statement " $\exists x \in S, p(x)$ " is False only when $p(x)$ is false for every $x \in S$
- Similarly, for the proposition of the form " $\forall x \in S, p(x)$ " to be false, its enough to exhibit one element ' a ' of ' S ' such that $p(a)$ is false. This element ' a ' is called as Counter Example
- For the proposition of the form " $\exists \mathrm{x} \in \mathrm{S}, \mathrm{p}(\mathrm{x})$ " to be true it enough to exhibit one element ' a ' of ' S ' such that $p(a)$ is true

Rules of Inference for Open Statement:

- If $\mathrm{p}(\mathrm{x})$ is an open statement for a given universe, and if $\forall \mathrm{x} \mathrm{p}(\mathrm{x})$ is true, then $\mathrm{p}(\mathrm{a})$ is true for each ' a ' in the Universe. This is called Rule of
- If $\mathrm{p}(\mathrm{x})$ is an open statement and it is true for any arbitrary ' x ' chosen from a set of ' S ' then the statement $\forall x \in S p(x)$ is true. This is known as the Rule of

Logical Equivalence

Two quantified statements are said to be logically equivalent, whenever they have same truth value in all possible situations
i. $\forall x,[p(x) \wedge q(x)] \Leftrightarrow(\forall x, p(x)) \wedge(\forall x, q(x))$
ii. $\exists x,[p(x) \wedge q(x)] \Leftrightarrow(\exists x, p(x)) \wedge(\exists x, q(x))$
iii. $\exists x,[p(x) \rightarrow q(x)] \Leftrightarrow \exists x,[\neg p(x) \vee(\exists x, q(x)]$

Rules of Negation of Quantified Statements

To Construct the negation of a quantified statement, change the quantifier from Universal to Existential and Vice-versa and also replace the open statement by its negation.

$$
\begin{aligned}
\neg\{\forall x, p(x)\} & \equiv \exists x,\{\neg p(x)\} \\
\neg\{\exists x, p(x)\} & \equiv \forall x,\{\neg p(x)\}
\end{aligned}
$$

Problems:

Negate and Simplify each of the following:

```
1. }\exists\textrm{x},[\textrm{p}(\textrm{x})\veeq(\textrm{x})
2. }\forall\textrm{x},[\textrm{p}(\textrm{x})\wedge\negq(\textrm{x})
3. }\forall\textrm{x},[\textrm{p}(\textrm{x})->\textrm{q}(\textrm{x}
4. }\exists\textrm{x},[{p(\textrm{x})\vee\textrm{q}(\textrm{x})}->\textrm{r}(\textrm{x})
```

Solution:

$$
\begin{aligned}
& \text { 1. } \forall \mathrm{x},[\neg \mathrm{p}(\mathrm{x}) \wedge \neg \mathrm{q}(\mathrm{x})] \\
& \text { 2. } \exists x,[\neg \mathrm{p}(\mathrm{x}) \vee \mathrm{q}(\mathrm{x})] \\
& \text { 3. } \exists \mathrm{x},[\mathrm{p}(\mathrm{x}) \wedge \neg \mathrm{q}(\mathrm{x})] \\
& \text { 4. } \forall \mathrm{x},[\{\mathrm{p}(\mathrm{x}) \vee \mathrm{q}(\mathrm{x})\} \wedge \neg \mathrm{r}(\mathrm{x})]
\end{aligned}
$$

Problem :

- Consider the following program segment

$$
\begin{aligned}
& \text { for } \mathrm{n}=1 \text { to } 10 \\
& \mathrm{~A}[\mathrm{n}]=\mathrm{n} * \mathrm{n}-\mathrm{n}
\end{aligned}
$$

Write the following statements in quantified form
a. Every entry in the array is non-negative
b. There exit two consecutive entries in A where the larger entry is twice the smaller.
c. The entries in the array are sorted in ascending order

Solution

a. Every entry in the array is non-negative

$$
\forall n(A[n] \geq 0)
$$

b. There exit two consecutive entries in A where the larger entry is twice the smaller.
$\exists n(A[n+1]=2 A[n])$
c. The entries in the array are sorted in ascending order $\forall n(A[n]<A[n+1])$

Validity of a Open Statement :

The Rule of universal specification indicates that the truth of an open statement in one particular instances follows (as a special case) from a more general (for the entire universe) truth of that universally quantified open statement

Eg., For the universe of all the people, consider the open statements
$m(x)$: x is a mathematics professor $\mathrm{c}(\mathrm{x}): \mathrm{x}$ has studied Calculus

Now consider the following argument

All mathematics professor bave studied calculus

Leo is a mathematics professor
therefore Leo bas studied calculus
Now, if 'a' represents this particular person 'Leo' (in the universe) then we can rewrite the above argument in symbolic form as

$$
\forall x[m(x) \rightarrow c(x)]
$$

$\mathrm{m}(\mathrm{a})$
$\therefore c(a)$

So, to establish the Validity of the Given argumew, we proceed as follows.
steps

1) $\forall x[m(x) \rightarrow c(x)]$
2) $m(l)$
3) $m(l) \rightarrow c(l)$
$4 \therefore(C l)$

Reasons
premise.
premise
Step 1 and the Rule of Universal specification from Step 2 \&s and Rules of Mochrs ponens.
Note: - the state mints in step $2 \& 3$ are mot quantified statement, hence we caw apply the rules of inference to these Statements to deduce the Conclusion.

Problems

- Consider the universe of all triangles in the plane in conjunction with the open statement
- $p(t): t$ has two sides of equal length $\mathrm{q}(\mathrm{t})$: t is an isosceles triangle $\mathrm{r}(\mathrm{t})$: t has two angles of equal measures
The arguments are
In triangle xy\& there is no pair of angles of equal measure
If a triangle bas 2 sides of equal length, then it is isosceles
If a triangle is isosceles, then it bas two angles of equal measure.
Therefore triangle xyy bas no two sides of equal length.

In symbolic form

$$
\begin{aligned}
& \neg r(c) \\
& \forall t[p(t) \rightarrow q(t)] \\
& \forall t[q(t) \rightarrow r(t) \\
& \therefore \neg p(c)
\end{aligned}
$$

Steps

1) $\forall t[p(t) \rightarrow q(t)]$
2) $p(c) \rightarrow q(c)$
3) $\forall t[q(t) \rightarrow r(t)]$
4) $q(c) \rightarrow r(c)$
5) $p(c) \rightarrow r(c)$
6) $\rightarrow r(c)$
7) $\therefore \neg p(c)$

Reasons
Premise
Step (1) and the Rule of Universal Specification
Premise
Step (3) and the Rule of Universal Specification
Steps (2) and (4) and the Law of the Syllogism
Premise
Steps (5) and (6) and Modus Tollens

Therefore it's a Valid Argument
2. Check the validity of the following argument

Consider the universe to be the set of all quadrilateral and the open statements are
$p(x)$: x is square
$q(x)$: x has four sides

Arguments are
All square have four sides
The quadrilateral ABCD has four sides
Therefore $A B C D$ is a square

In symbol forms

$$
\begin{aligned}
& \forall x[p(x) \rightarrow q(x)] \\
& \therefore p(a) .
\end{aligned}
$$

$$
\begin{array}{ll}
\text { steps } & \text { Reasons } \\
\text { 1. } \forall x[p(x) \rightarrow q(x)] & \text { premise. } \\
\text { step } \& \text { Rule of US } \\
\text { 2. } p(a) \rightarrow q(a) & \text { premise. } \\
\text { 3. } \quad q(a) & \\
4 \quad \therefore p(a) &
\end{array}
$$

\therefore the above argument is not val

Find whether the following argument is valid or not. (consider the all the engineering students as universe)

No engincering student of $1^{\text {st }}$ or $2^{\text {nd }}$ semester studies logic design
Anil is an engineering student who studies logic design
Therefore Anil is not in Second Semester:

3 Open statements are

- $p(x): x$ is in first semester
$\mathrm{q}(\mathrm{x}): \mathrm{x}$ is in second semester
$\mathrm{r}(\mathrm{x})$: x studies logic design

Arguments in symbolic form:

$$
\forall x,[(p(x) \vee q(x)) \rightarrow \neg r(x)]
$$

$$
\begin{aligned}
& r(a) \\
& \therefore \neg q(a)
\end{aligned}
$$

Solution
Reasons

1. $\forall x[(p(x) \vee q(x) \rightarrow \neg r(x)]$ - premise
2. $[[p(a) \vee q(a)) \rightarrow \neg r(a)]$ - step \& law of US
3. $r(a) \rightarrow \neg(p(a) \vee q(a))$-step $2 \&$ conléapositive. premise.
4. ra.)
5. $7(p(a) \vee q(a))$

- Step $3<4 \&$ ponens.

6. $7 p(a) \wedge 7 q(a)$.
$7 . \therefore 7 q(a)$

- step 5 \& De morgan law
- step 6 \& Conjunctive. simplification.
\therefore The argument is valid

The Rule of Universal Generalization

The rule states that if an open statement $\mathrm{p}(\mathrm{x})$ is proved to be true when x is replaced by any arbitrarily chosen element ' c ' from the universe, then the universally quantified statement $\forall x p(x)$ is also true

Consider the examples,
Let $\mathrm{p}(\mathrm{x}), \mathrm{q}(\mathrm{x})$ and $\mathrm{r}(\mathrm{x})$ be open statement, show that the following argument is valid

$$
\begin{aligned}
& \forall x[p(x) \rightarrow q(x)] \\
& \forall x[q(x) \rightarrow r(x)] \\
& \therefore \forall x[p(x) \rightarrow r(x)]
\end{aligned}
$$

Solution:
steps

1. $\forall x[p(x) \rightarrow q(x)]$
2. $p(c) \rightarrow q(c)$
3. $\forall x[q(x) \rightarrow r(x)]$
4. $q(c) \rightarrow r(c)$
$5 p(c) \rightarrow r(c)$ Universal Apeciticato syllogism.
5. $\therefore \forall x[P(x) \rightarrow r(x)] \quad$ form step 5 \& Rnles
ratid argument of Cniversal Generahis ation.
6. $P \vee \sim P$
7. $\sim(P \wedge \sim P)$
8. $|(P \rightarrow Q) \wedge P| \rightarrow Q$
9. $[(P \rightarrow Q) \wedge \sim Q \mid \rightarrow \sim P$
10. $\sim \sim P \leftrightarrow P$
11. $|(P \rightarrow Q) \wedge(Q \rightarrow R)| \rightarrow(P \rightarrow R)$
12. $(P \wedge Q) \rightarrow P$ $(P \wedge Q) \rightarrow Q$
13. $P \rightarrow(P \vee Q)$ $Q \rightarrow(P \vee Q)$
14. $(P \leftrightarrow Q) \leftrightarrow[(P \rightarrow Q) \wedge(Q \rightarrow P)]$
15. $(P \wedge Q) \leftrightarrow(Q \wedge P)$
16. $(P \vee Q) \leftrightarrow(Q \vee P)$
17. $[(P \wedge Q) \wedge R] \leftrightarrow[P \wedge(Q \wedge R)]$
18. $[(P \vee Q) \vee R] \leftrightarrow[P \vee(Q \vee R)]$
19. $\sim(P \vee Q) \leftrightarrow(\sim P A \sim Q)$
20. $\sim(P \wedge Q) \leftrightarrow(\sim P \vee \sim Q)$
21. $[P \wedge(Q \vee R)] \leftrightarrow[(P \wedge Q) \vee(P \wedge R)]$
22. $[P \vee(Q \wedge R)] \leftrightarrow[(P \vee Q) \wedge(P \vee R)]$
23. $(P \rightarrow Q) \leftrightarrow(\sim Q \rightarrow \sim P)$
24. $(P \rightarrow Q) \leftrightarrow(\sim P \vee Q)$
25. $[(P \vee Q) \wedge \sim P] \rightarrow Q$
26. $(P \vee P) \leftrightarrow P$
27. $(P \wedge P) \leftrightarrow P$

Law of the excluded middle

Contradiction

Modus ponens

Modus tollens

Double negution
Law of the syllogism
Decomposing a conjunction Decomposing a conjunction

Constructing a disjunction Constructing a disjunction

Definition of the biconditional
Commutative law for A
Commutative law for V
Associative law for A
Associative law for V
DeMorgan's luw
DeMorgan's luw
Distributivity
Distributivity

Contrapositive

Conditional disjunction
Disjunctive syllogism
Simplification
Simplification

