Coding Theory

Introduction:

- In Digital communication system, information is transmitted in the form of Strings of 0's and1's
- While transmitted the information certain problems may raise due to noise in the transmission channel.
- Therefore, when certain signal is transmitted, a different signal may be received causing the receiver to make wrong decision.
- In this chapter we study about the techniques that help to detect and perhaps even to correct the transmission Errors.

Basics

- Consider a set $Z_{2}=\{0,1\}$,
- then $\mathrm{Z}_{2}{ }^{\mathrm{n}}=\mathrm{Z}_{2} \times \mathrm{Z}_{2} \times \mathrm{Z}_{2} \ldots$ (n factors)
- $=\left\{(a 1, a 2, a 3 \ldots \ldots . . a n\} \mid a 1, a 2, \ldots \ldots . a n \in Z_{2}\right\}$
- Thus, every element of $Z_{2}{ }^{n}$ is a tuple ($a 1, a 2, \ldots$. an) in which every a_{i} belong to Z_{2} so that it is a 0 or 1
- Eg., $\mathrm{Z}_{4}{ }^{3}=(1,2,3) \quad / /$ elements in this group is with 4 and has 3 elements(3 -tuple)
- $\mathrm{Z}_{4}{ }^{5}=(2,3,3,1,1) \quad / /$ elements in this group is with 4 and has 5 elements (5-tuple)
- Similarly, the word/string 00101 is a 5 -tuple $(0,0,1,0,1) \in \mathrm{Z}_{2}{ }^{5}$

Transmission of a word

- When a word $\mathrm{c}=\mathrm{c} 1 \mathrm{c} 2 \mathrm{c} 3 \ldots \ldots \mathrm{cn} \in \mathrm{Z}_{2}{ }^{\mathrm{n}}$ is transmitted from a point A through a transmission channel T.
- In ideal situation (if no noise) this word would be received at a point B without any changes.
- But in actual practice, transmission channels suffer disturbances called noise that may cause a ' 0 ' to be transmitted a ' 1 ' or vice versa.
- Hence a word ' c ' transmitted from A is received as a different word ' r ' \in $Z_{2}{ }^{n}$ at B

Transmission of word...

- The word ' r ' will be of the form $r=r 1 r 2 r 3 \ldots .$. rn where each r_{i} is a 0 or 1 but $r_{j} \neq c_{j}$ for some $j, 1 \leq j \leq n$
- r can be written as $\mathrm{r}=\mathrm{c}+\mathrm{e}$ where c is a word in $\mathrm{Z}_{2}{ }^{\mathrm{n}}$ and e is error pattern

Symmetric Channel

- Suppose 'P1' is the probability(likelihood) that the transmitted signal 0 is received as the signal 1 and ' $\mathrm{P} 2^{\prime}$ ' is the probability that transmitted signal 1 is received as 0 .
- The transmission channel is said to be symmetric if $\mathrm{P} 1=\mathrm{P} 2$.
- Thus, in Symmetric Channel the probability that a transmitted signal 1 is received as the signal 0 is equal to the probability that a transmitted signal 0 is received as 1 .

Binary Symmetric Channel

- If p is the probability of incorrect transmission that a signal (0 or 1) is received correctly is 1-p

- As we are transmitting only 0 or 1 (digital transmission) the symmetric channel is referred to as Binary Symmetric Channel
- Suppose ' r ' differs from ' c ' in exactly one place (say $j^{\text {th }}$ place), then, $\mathrm{r} 1=$ $c 1, r 2=c 2, r 3=c 3, r_{j-1}=c_{j-1}, r_{j} \neq c_{j}, r_{j+1}=c_{j+1} \ldots \ldots . r_{n}=c_{n}$
Since the probability that $r_{i}=c_{i}$ is (1-p) for each i, the probability that $\mathrm{r}_{1}=\mathrm{c}_{1}, \mathrm{r}_{2}=\mathrm{c}_{2} \ldots \ldots . \mathrm{r}_{\mathrm{j}-1}=\mathrm{c}_{\mathrm{j}-1}$ is (By the product rule)
- $(1-p)(1-p)(1-p)(1-p)=(1-p)^{j-1} / /(j-1)$ factors
- Similarly the probability that ${ } \mathrm{r}_{\mathrm{j}+1}=\mathrm{c}_{\mathrm{j}+1} \ldots \ldots . \mathrm{r}_{\mathrm{n}}=\mathrm{c}_{\mathrm{n}}$

$$
(1-p)(1-p)(1-p)(1-p)=(1-p)^{n-j} \quad / /(n-j) \text { factors }
$$

- Probability that $r_{j} \neq c_{j}$ is p

Continued....

- Therefore, the probability that

$$
\begin{aligned}
& r 1=c 1, r 2=c 2, r 3=c 3, r_{j-1}=c_{j-1}, r_{j} \neq c_{j}, r_{j+1}=c_{j+1} \ldots \ldots r_{n}=c_{n} \text { is } \\
& =(1-p)^{j-1} \cdot p \cdot(1-p)^{n-j} \\
& =p \cdot(1-p)^{n-1}
\end{aligned}
$$

This is probability that ' r ' differs from ' c ' in exactly one place, Similarly the probability that ' r ' differs from ' c ' in ' k ' places is

$$
=p^{k} \cdot(1-p)^{n-k}
$$

Problems:

1. The word $\mathrm{c}=110101$ is transmitted through a binary symmetric channel T. if the error pattern $\mathrm{e}=101010$, find the word $\mathrm{r}=\mathrm{T}(\mathrm{c})$ received.
Solution : $\mathrm{c}=110101 \in \mathrm{Z}_{2}{ }^{6}$

$$
\mathrm{e}=101010 \in \mathrm{Z}_{2}{ }^{6}
$$

$$
\mathrm{r}=\mathrm{c}+\mathrm{e}
$$

$$
=(1,1,0,1,0,1)+(1,0,1,0,1,0)
$$

$$
=(1+1,1+0,0+1,1+0,0+1,1+0)
$$

$$
\mathrm{r}=0 \begin{array}{llllll}
& 1 & 1 & 1 & 1
\end{array}
$$

$$
/ /(1+1=2-2) \text { in } Z_{2}
$$

Problems..

2. The word $\mathrm{c}=1010110$ is transmitted through a binary symmetric channel. If $e=0101101$ is the error pattern, find the word r received, if $p=0.05$ is the probability that a signal is incorrectly received, find the probability with which r is received.
Solution: Here the transmitted word $\mathrm{c}=1010110 \in \mathrm{Z}_{2}{ }^{7}$ and error pattern

$$
\begin{aligned}
& \mathrm{e}=0101101 \in \mathrm{Z}_{2}{ }^{7} \text { and we know that } \mathrm{r}=\mathrm{c}+\mathrm{e} \text {, where }+ \text { is the addition } \\
& \text { in } \mathrm{Z}_{2}{ }^{7} \\
& \mathrm{r}=\mathrm{c}+\mathrm{e}=(1,0,1,0,1,1,0)+(0,1,0,1,1,0,1) \\
& =(1+0,0+1,1+0,0+1,1+1,1+0,0+1) \\
& \mathrm{r}=1
\end{aligned} 1 \begin{array}{llllll}
& 1 & 1 & 0 & 1 & 1
\end{array}
$$

Problems....

$$
\begin{aligned}
& \mathrm{c}=1010110 \\
& \mathrm{r}=1111011
\end{aligned}
$$

Comparing c and r, r differs from c in 4 places,
Therefore probability with which r is received is $=p^{4}(1-p)^{7-4}$
$=(0.05)^{4}(1-0.05)^{3}$
$=0.000053$

Problems...

3. The word $\mathrm{c}=1010011$ sent through a binary symmetric channel is received as the word $r=T(c)=1100110$. Find the error pattern.

Solution : c=1010011, r= 1100110

$$
\mathrm{r}=\mathrm{c}+\mathrm{e}
$$

$$
1=1+\mathrm{e} 1, \quad \text { Therefore e } 1=0
$$

$$
1=0+e 2, \quad e 2=1
$$

$$
0=1+e 3, \quad e 3=1
$$

$$
0=0+\mathrm{e} 4, \quad \mathrm{e} 4=0
$$

$$
1=0+e 5, \quad \text { e5 }=1
$$

$$
1=1+\mathrm{e} 6, \quad \text { e6=0 }
$$

$$
0=1+\mathrm{e} 7, \quad \mathrm{e} 7=1 \quad \text { Therefore error pattern } \mathrm{e}=0110101
$$

Problems..

4. A word c transmitted through a binary symmetric channel is received as $r=0000111$. if $\mathrm{e}=0101111$ is the error pattern , determine c .

Solution: $\mathrm{r}=\mathrm{c}+\mathrm{e}$

$$
0=\mathrm{c} 1+0, \quad \mathrm{c} 1=0
$$

$$
0=c 2+1, \quad c 2=1
$$

$$
0=c 3+0, \quad c 3=0
$$

$$
0=\mathrm{c} 4+1, \quad \mathrm{c} 4=1
$$

$$
1=c 5+1, \quad c 5=0
$$

$$
1=c 6+1, \quad c 6=0
$$

$$
1=c 7+1, \quad c 7=0 \quad \text { Therefore } \mathrm{c}=0101000
$$

Problems..

5. The word $c=1010110$ is sent through a binary symmetric channel. If $p=0.02$ is the probability of incorrect receipt of a signal. Find the probability that c is received as $\mathrm{r}=1011111$, determine error pattern.
6. A binary symmetric channel has probability $\mathrm{p}=0.05$ of incorrect transmission . If the word $\mathrm{c}=011011101$ is transmitted, what is the probability that.
i) Single error occurs
ii) Double error occurs
iii) Triple error occurs

Solution:

The probability that exactly ' k ' errors are made in the transmission is $n C_{k} p^{k}(1-p)^{n-k}$

