

Course Title: Software Project Management	Course Code: CS710
Credits (L: T: P): 4:0:0	Contact Hours (L: T: P): 52:0:0
Type of Course: Lecture	Category: Professional Core Course
CIE Marks: 50	SEE Marks: 100

<u>Pre-requisite:</u> Software Engineering

CO-1	Comprehend the conventional software management Concepts.
CO-2	Assessment of process and project metrics.
CO-3	Understand artifacts of software project estimation.
CO-4	Realize the project scheduling process and its techniques.
CO-5	Analyze the process of risk management, maintenance and reengineering.

Unit No.	Course Content	No. of Hours
1	Project Management Concepts: The management spectrum: The People - Stake Holders, Team leaders, Software team, agile teams, Coordination and Communication Issues, The Product- Software Scope, Problem Decomposition, The Process- Melding the Product and the Process,	10
	Process Decomposition, The Project - The W5HH principle, critical practices.	
2	Process and Project Metrics: Metrics in the process and project domains, Process Metrics and Software Process Improvement, Project Metrics, Software Measurement, Size-Oriented Metrics, Function-Oriented Metrics, Reconciling LOC and FP Metrics, Object-Oriented Metrics- Number of scenario scripts, Number of key classes, Number of support classes, Average number of support classes per key class, Number of subsystems, Use Case-Oriented Metrics, Web App Project Metrics, Metrics for Software Quality- Measuring Quality, Defect Removal Efficiency, Integrating metrics within the software process, Arguments for Software Metrics, Establishing a Baseline, Metrics Collection, Computation, and Evaluation, Metrics for small organizations, Establishing a software metrics program.	11

Educate Elevate Enlighten

JSS Mahavidyapeetha JSS Science And Technology University (Established Under JSS Science and Technology University Act No. 43 of 2013)

2	E-time time for Setting Device the Observations and institution the	10
3	Estimation for Software Projects: Observations on estimation, the	10
	project planning process, Software scope and feasibility, Resources -	
	Human Resources, Reusable Software Resources, Environmental	
	Resources, Software Project Estimation, Decomposition techniques-	
	Software sizing, Problem based estimation, An Example of LOC-Based	
	Estimation, An Example of FP-Based Estimation, Process-Based	
	Estimation, An Example of Process-Based Estimation, Estimation with	
	Use Cases, An Example of Estimation Using Use Case Points, Reconciling	
	Estimates, Empirical Estimation Models, The Structure of Estimation	
	Models, The COCOMO-II Model, The Software Equation, Estimation for	
	Object-Oriented Projects, Specialized Estimation Techniques- Estimation	
	for Agile Development, Estimation for WebApp Projects, The Make/Buy	
	Decision, Creating a Decision Tree, Outsourcing.	
4	Project Scheduling: Basic Concepts, Project Scheduling, Basic	10
	Principles, The Relationship between People and Effort, Effort	
	Distribution, defining a task for the software project, A Task Set Example,	
	Refinement of Major Tasks, defining a task network, scheduling, Time-	
	Line Charts, Tracking the Schedule, Tracking Progress for an OO Project,	
	Scheduling for Web App and Mobile Projects, Earned Value Analysis.	
5	Risk Management, Maintenance and Reengineering: Reactive versus	11
	Proactive Risk Strategies, Software Risks, Risk Identification-Assessing	
	Overall Project Risk, Risk Components and Drivers, Risk Projection-	
	Developing a Risk Table, Assessing Risk Impact, Risk Refinement, Risk	
	Mitigation, Monitoring and Management, The RMMM Plan; Maintenance	
	and Reengineering: Software Maintenance, Software Supportability,	
	Reengineering, Business Process Reengineering-Business Processes, A	
	BPR Model, Software Reengineering- A Software Reengineering Process	
	Model, Software Reengineering Activities, Reverse Engineering, Reverse	
	Engineering to Understand Data, Reverse Engineering User Interfaces,	
	Restructuring- Code Restructuring, Data Restructuring, Forward	
	Reengineering- Forward Engineering for Client-Server Architectures,	
	Forward Engineering for Object-Oriented Architectures, The Economics	
	of Reengineering.	
L		

Text Book:

Sl. No.	Author/s	Title	Publisher Details			
1	Roger S Pressman and	Software Engineering: A	8th edition, McGraw Hill			
	Bruce R Maxim	Practitioner's Approach	Education,2015 reprint			

Reference Books:

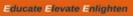
Sl. No.	Author/s Title		Publisher Details		
1	Ian Summerville	Software Engineering	10 th edition, Pearson Education Publication.		

2	Bob Hughes, Mike	Software Project	6 th edition, McGraw Hill
	Cotterell	Management	Education,2017
	and Rajib Mall		
3	Royce	Software Project	First Edition
		Management: A Unified	Pearson Education,2002
		Framework	
4	Robert K. Wysocki	Effective Software	John Wiley Publication,2010
		Project Management	

Web Resources:

Sl. No.	Web link
1	https://nptel.ac.in/noc/courses/noc19/SEM2/noc19-cs70/
2	https://nptel.ac.in/courses/110/104/110104073/

Course	Program Outcomes								PSO's							
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO2	PSO3	PSO4
CO-1	3	1	1	1	0	1	0	0	2	2	2	1	1	1	1	1
CO-2	2	2	0	2	1	1	1	0	1	0	2	1	3	1	2	1
CO-3	2	3	1	2	2	1	2	1	1	3	3	3	2	1	3	1
CO-4	2	2	2	2	3	1	1	1	3	3	3	2	2	1	3	1
CO-5	3	2	3	2	1	1	2	1	2	2	3	3	2	1	3	3



Course Title: Advanced Computer Architecture	Course Code: CS720
Credits (L: T: P): 4:0:0	Contact Hours (L: T: P): 52:0:0
Type of Course: Lecture	Category: Professional Core Course
CIE Marks: 50	SEE Marks: 100

<u>Pre-requisite:</u> Computer Organization, Data Structure.

CO-1	Understand the architectural and organizational innovations used in modern computers.
CO-2	Comprehend the importance of memory hierarchy in achieving high performance
	and apply optimization schemes to improve the memory design.
CO-3	Analyse the ILP design structures in high-performance processors.
CO-4	Investigate the performance of different architectures with respect to ILP and DLP.
CO-5	Design multiprocessor architecture.

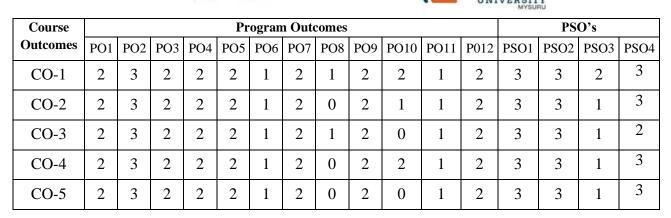
Unit No.	Course Content	No. of Hours
1	Fundamentals of Quantitative design and analysis: Introduction, Classes of Ccomputers, Defining Computer Architecture, Trends in technology, Trends in Power and Energy in Integrated Circuits, Trends in cost, Dependability. Measuring, Reporting and Ssummarizing Pperformance, Quantitative principles of computer ddesign. Putting It All Together: Performance, Price and Power.	10
2	Review of memory Hierarchy: Introduction, Cache Performance, Six Basic Cache Optimizations, Virtual Memory, Protection and Examples of Virtual memory. Memory Hierarchy Design: Introduction, Ten Advanced Optimizations of Cache performance, Memory Technology and Optimizations, Protection: Virtual Memory and Virtual Machines, Putting it all together: Memory Hierarchies in ARM Cortex-A8.	12
3	Pipelining - Basics and Intermediate concepts: Introduction, The Major Hurdles of Pipelining-Pipeline Hazards. Instruction-Level Parallelism and Its Exploitation - I: Instruction-Level Parallelism: Concepts and Challenges, Basic compiler Techniques for Exposing ILP, Reducing Branch Costs with Advanced Branch Prediction, Overcoming Data Hazards with Dynamic Scheduling, Dynamic Scheduling: Examples and the Algorithm, Hardware-Based Speculation.	10

	Instruction-Level Parallelism and Its Exploitation – II: Exploiting ILP								
	Using Multiple Issue and Static Scheduling, Exploiting ILP Using Dynamic								
	Scheduling, Multiple Issue, and Speculation, Advanced Techniques for								
4	Instruction Delivery and Speculation, Studies of the Limitations of ILP,	10							
	Putting it all together: ARM Cortex-A8. Data-Level Parallelism:								
	Introduction, Vector Architecture, SIMD Instruction Set Extensions for								
	Multimedia.								
	Thread Level Parallelism: Introduction, Centralized Shared Mmemory								
5	Aarchitectures, Performance of symmetric shared memory multiprocessors,	10							
5	distributed Shared memory and directory-based coherence,	10							
	synchronization: The Basics.								

Text Book:

Sl. No.	Author/s	Title	Publisher Details
1	John L. Hennessy and David A.	Computer Architecture: A Quantitative Approach	5 th Edition, Morgan Kauffman Elsevier, 2013
	Patterson		

Reference Books:


Sl. No.	Author/s	Title	Publisher Details
1	Kai Hwang	Advanced Computer Architecture	3 rd Edition, Tata McGraw
		- Parallelism, Scalability,	Hill, 2015
		Programmability	
2	D. B Kirk and	Programming Massively Parallel	2 nd Edition, Morgan
	W.W. Hwu	Processors	Kauffmann Publishers, 2012
3	Kai Hwang and	Scalable Parallel Computers	1 st Edition, MGH. 2001
	Zu	Architecture	
4	M.J Flynn	Computer Architecture, Pipelined	1st edition, Narosa 2011
	-	and Parallel Processor Design	

Web Resources:

Sl. No	No Weblink							
1	https://nptel.ac.in/courses/106/103/106103206/							
2	https://nptel.ac.in/courses/106/105/106105163/							

Educate Elevate Enlighten

JSS Mahavidyapeetha JSS Science And Technology University (Established Under JSS Science and Technology University Act No. 43 of 2013)

Course Title: Linux Device Driver	Course Code: CS731
Credits (L: T:P): 4:0:0	Contact Hours (L: T: P): 52:0:0
Type of Course: Lecture	Category: Professional Elective Course
CIE Marks: 50	SEE Marks: 100

<u>Pre-requisite:</u> Operating System.

<u>Course Outcomes:</u> After completing this course, students should be able to:

CO-1	Understand the Fundamentals of Device Drivers.
CO-2	Design and Develop Character and Block Device Drivers.
CO-3	Apply Debugging Tools and Device Drivers.
CO-4	Analyze and Implement Network Device Drivers.
CO-5	Evaluate PCI Drivers and USB Drivers.

Unit No.	Course Content	No. of Hours
	An Introduction to Device Drivers and Char Drivers: The Role of the Device Driver, Splitting the Kernel, Classes of Devices and Modules,	
1	Security Issues, Building and Running Modules: Setting Up Your Test	10
	System, The Hello World Module, Compiling and Loading, The Kernel Symbol Table, Initialization and Shutdown.	
2	Character Device Drivers : The Design of scull, Major and Minor Numbers, Some Important Data Structures, Char Device Registration, open and release, scull's Memory Usage, read and write. Debugging Techniques : Debugging Support in the Kernel, Debugging by Printing.	11
3	Advanced Char driver operations: Ioctl, Blocking I/O, poll and select, Asynchronous Notification, Seeking a Device, Access Control on a Device File.	10
4	Block Drivers: Registration, The Block Device Operations. Network Drivers: How snull Is Designed, connecting to the Kernel, the net device Structure in Detail, Opening and Closing, Case Study: Implementation of simple Network Device Driver.	11
5	PCI Drivers: The PCI Interface, USB Drivers: USB Device Basics, USB and Sysfs, USB Urbs, Writing a USB Driver	10

Text Book:

Sl. No.	Author/s Title		Publisher Details			
1	Jonathan Corbet, Alessandro Rubini,	Linux Device Drivers	3 rd Edition, O'Reilly Media, U.S.A, Reprint 2019			
	Greg Kroah Hartman		, r			

Reference Books:

Sl. No.	Author/s	Title	Publisher Details
1	Robert Love	Linux Kernel Development	2 nd edition, Pearson India,
			Reprint 2019
2	Mahesh S Jadhav	Easy Linux Device Driver	2 nd Edition, High Tech Easy
			Publishing, 2020
3	John Madieu	Linux Device Drivers	2 nd Edition, Packt
		Development	Publishing,2017.
4	Robert Love	Linux Kernel Development	Indian Edition, Pearson
			Education India,2010

Web Resources:

Sl. No.	Web link
1	https://lwn.net/Kernel/LDD3/
2	https://nptel.ac.in/content/storage2/courses/106108101/pdf/PPTs/Mod_20.pdf

Course	Program Outcomes											PSO's				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO2	PSO3	PSO4
CO-1	2	1	1	0	1	0	1	0	1	0	0	1	2	2	1	1
CO-2	2	3	3	2	2	0	0	1	0	1	0	0	2	2	1	1
CO-3	2	2	2	2	3	0	1	0	1	0	1	0	2	1	1	1
CO-4	2	3	3	2	1	0	0	1	0	1	0	1	2	1	1	1
CO-5	2	2	2	2	2	0	0	0	1	1	0	1	2	2	1	1

Course Title: Adhoc Networks	Course Code: CS732
Credits (L: T:P): 4:0:0	Contact Hours (L: T: P): 52:0:0
Type of Course: Lecture	Category: Professional Elective Course
CIE Marks: 50	SEE Marks: 100

<u>Pre-requisite:</u> Data Communication, Computer Networks.

CO-1	Understand the fundamental principles of Ad hoc networks along with MAC protocol.
CO-2	Design routing protocols for ad hoc networks with respect to protocol design
	issues.
CO-3	Apply various multicast routing protocol in ad hoc networks.
CO-4	Analyze the challenges in designing transport layer protocols for Ad hoc
	networks.
CO-5	Evaluate energy and QoS related performance measurements of ad hoc networks.

Unit No.	Course Content						
1	Ad hoc Wireless Networks: Introduction, Issues in Ad hoc Wireless Networks, Adhoc Wireless Internet; MAC Protocols for Ad hoc Wireless Networks: Introduction, Issues in Designing a MAC Protocol, Design Goals of MAC Protocols, Classification of MAC protocols, Contention-Based Protocols, Contention-Based Protocols with Reservation Mechanisms, Contention-Based Protocols with Scheduling Mechanisms, MAC Protocols that Use Directional Antennas.	10					
2	Routing Protocols for Ad Hoc Wireless Networks: Introduction, Issues in Designing a Routing Protocol for Ad hoc Wireless Networks; Classification of Routing Protocols; Table Driven Routing Protocols; On-Demand Routing Protocols, Hybrid Routing Protocols, Hierarchical Routing Protocols and Power-Aware Routing Protocols.	11					
3	Multicast Routing in Ad hoc Wireless Networks: Introduction, Issues in Designing a Multicast Routing Protocol, Operation of Multicast Routing Protocols, An Architecture Reference Model for Multicast Routing Protocols, Classifications of Multicast Routing Protocols, Tree-Based Multicast Routing Protocols and Mesh-Based Multicast Routing Protocols.	10					
4	Transport Layer and Security Protocols for Ad hoc Networks: Introduction, Issues in Designing a Transport Layer Protocol; Design Goals of a Transport Layer Protocol; Classification of Transport Layer Solutions; TCP over Transport Layer Solutions; Other Transport Layer Protocols for Ad hoc Networks; Security in Ad hoc Wireless Networks, Issues and Challenges in Security Provisioning, Network Security Attacks, Key Management and Secure Touting Ad hoc Wireless Networks.	10					

5	Quality of Service and Energy Management in Ad hoc Wireless Networks: Introduction, Issues and Challenges in Providing QoS in Ad hoc Wireless Networks, Classification of QoS Solutions, MAC Layer Solutions, Network Layer Solutions; Energy Management in Ad hoc Wireless Networks: Introduction, Need for Energy Management in Ad hoc Wireless Networks: Classification of Energy Management Schames Battery	11
	Networks, Infoduction, Need for Energy Management in Ad noc whereas Networks, Classification of Energy Management Schemes, Battery Management Schemes, Transmission Management Schemes, System Power Management Schemes.	

Text Book:

Sl. No.	Author/s	Title	Publisher Details
1	Siva Ram Murthy & B. S. Manoj		2 nd Edition, Pearson Education, 2011, reprint 2019

Reference Books:

Sl. No.	Author/s	Title	Publisher Details
1	Ozan K. Tonguz and Gianguigi Ferrari	Ad hoc Wireless Networks	John Wiley, reprint 2019.
2	Xiuzhen Cheng, Xiao Hung, Ding- Zhu Du	Ad hoc Wireless Networking	Kluwer Academic Publishers, 2004.
3	C.K. Toh	Ad-hoc Mobile Wireless Networks- Protocols and Systems	Pearson Education, 2002.
4	Zhao and Leonidas	Wireless Sensor Networks	Morgan Kaufman Publishers, 2004

Web Resources:

Sl. No.	Web link				
1	http://nptel.ac.in/courses/106105160				
2	https://onlinecourses.nptel.ac.in/noc17_cs07/preview				

Course	Program Outcomes									PSO's						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO2	PSO3	PSO4
CO-1	3	2	1	1	0	1	1	0	1	0	0	1	2	2	1	1
CO-2	3	3	3	2	2	0	1	0	0	1	1	1	2	2	1	1
CO-3	2	2	3	2	1	1	0	1	1	1	0	1	1	2	1	1
CO-4	2	2	3	2	1	2	1	1	0	1	0	1	2	1	1	1
CO-5	2	2	2	2	2	1	1	1	0	1	1	0	2	1	1	1

Course Title: Advanced	Course Code: CS733
Cryptography	
Credits (L: T:P): 4:0:0	Contact Hours (L: T: P): 52:0:0
Type of Course: Lecture	Category: Professional Elective
	Course
CIE Marks: 50	SEE Marks: 100

<u>Pre-requisite:</u> Computer Networks.

CO-1	Understand and apply different data encryption/decryption techniques.
CO-2	Explore algorithms related to the Public Key Cryptography and hash functions.
CO-3	Appraise the authentication and Key management activities.
CO-4	Address issues related to security in Transport and Application Layer.
CO-5	Understanding the concepts of IP and network security.

Unit	Course Content						
No.		Hours					
1	Encryption Techniques and Data Encryption Standards	11					
	Introduction: Computer security concepts, OSI security Architecture,						
	Security attacks and Services, Security mechanism and model for						
	Network Security. Classical Encryption Techniques: Symmetric Cipher						
	Model, Substitution Techniques: Caesar Cipher, Mono alphabetic Cipher,						
	Play fair Cipher, Hill Cipher, Polyalphabetic Cipher, Onetime Pad.						
	Transposition Techniques, Steganography. Traditional Block Cipher:						
	Feistel structure, Block cipher design Principles. Data Encryption						
	Standard(DES), DES example, The Strength of DES.						
2	Public-Key cryptography and Hash Functions function						
	Public-Key cryptography: Principles of Public-Key Cryptosystems, The						
	RSA Algorithm, Diffie-Hellman Key Exchange. Cryptographic Hash						
	Functions: Applications of Cryptographic Hash Functions, Two simple						
	hash functions, Requirements and security, secure hash algorithm (SHA).						
3	Authentication and Key Management Message Authentication:	11					
	Authentication Requirements, Authentication Functions, Message						
	Authentication Codes (MAC), HMAC. Authentication Applications:						
	Digital signature. User authentication: Remote user authentication						
	principles, Remote user Authentication using symmetric Encryption,						
	Remote user authentication using Asymmetric Encryption. Key						
	Distribution: Symmetric key distribution using symmetric and						
	asymmetric encryption, Distribution of public keys.						

4	Application and Transport Layer Security					
	Application Layer Security: Pretty Good Privacy (PGP), Multipurpose					
	Internet Mail Extensions (MIME) and secured Multipurpose internet Mail					
	extensions(S/MIME). Transport Layer Security: Web security					
	considerations, Secure socket layer (SSL), Transport Layer security (TLS).					
5	Network Layer Security					
	Authentication applications: Kerberos, X.509 authentication services,					
	public key infrastructure. IP Security: IP Security Overview, IP security					
	architecture, authentication header, Encapsulation Security Payload (ESP).					

Text Books:

Sl. No.	Author/s	Title	Publisher Details
1	William Stallings	Cryptography and Network Security - Principles and Practices	4th Edition, Prentice Hall, 2016. Reprint 2019

Reference Books:

Sl. No.	Author/s	Title	Publisher Details
1	Behrouz A Forouzan,	Cryptography and	Mc-GrawHill, 3rd Edition,
	Debdeep	Network Security	2015
	Mukhopadhyay		
2	Jonathan Katz, Yehuda	Introduction to Modern	CRC press publications. 2007
	Lindell	Cryptography"	
3	Atul Kahate	Cryptography and	3 rd Edition, McGraw Hill
		Network Security	Education private Limited,
			2013
4	Douglas R. Stinson	Cryptography: Theory	3 rd Edition, Chapman and
		and Practice	Hall/CRC, 2006

Web Resources:

,	Sl. No.	Web link
	1	https://onlinecourses.nptel.ac.in/noc21_cs16/preview
4	2	https://onlinecourses.nptel.ac.in/noc21_cs43/preview

Course		Program Outcomes													PSO's			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO2	PSO3	PSO4		
CO-1	3	2	2	1	2	2	2	2	3	3	1	2	2	3	3	2		
CO-2	3	3	3	2	3	2	2	3	2	3	2	3	3	3	2	2		
CO-3	3	3	3	2	3	2	2	2	3	2	2	2	3	3	2	3		
CO-4	3	2	3	2	3	2	2	2	2	2	1	3	3	3	2	2		
CO-5	2	3	3	2	3	2	1	3	2	2	1	3	3	3	2	2		

Course Title: Advances in AI	Course Code: CS734
Credits (L: T:P): 4:0:0	Contact Hours (L: T: P): 52:0:0
Type of Course: Lecture	Category: Professional Elective Course
CIE Marks: 50	SEE Marks: 100

Pre-requisite: Artificial Intelligence and Machine Learning

CO-1	Demonstrate the fundamentals of Intelligent Agents				
CO-2	Illustrate the reasoning on Uncertain Knowledge				
CO-3	Explore forms of learning in solving AI problems				
CO-4	Realize natural language processing and robotics aspects through artificial				
	intelligence.				

Unit No.	Course Content	No. of Hours
1.	Intelligent Agents: Foundations of AI, Agents and Environments, Good	12
	Behaviour: The Concept of Rationality, The Nature of Environments, The	
	Structure of Agents. Problem Solving: Games, Optimal decisions in	
	Games, Alpha-beta Pruning, Imperfect Real time decisions, stochastic	
	games	
2.	Logical Agents: Knowledge based agents, The Wupus world, Logic	10
	Uncertain knowledge and Reasoning: Quantifying Uncertainty, acting	
	under Uncertainty, Basic Probability Notation, Inference Using Full Joint	
	Distributions, Independence, Bayes Rule and Its Use, The Wumpus	
	World Revisited	
3.	Learning: Forms of learning, supervised learning, learning decision	10
	trees, evaluating and choosing best hypothesis, Theory of learning,	
	regression and classification with linear models, Artificial Neural	
	networks, non-parametric models, SVM, Ensemble Learning, Practical Machine Learning.	
4.	Natural Language Processing: Language Models, Text Classification,	10
т.	Information Retrieval, Information Extraction. Perception: Image	10
	formation, Image processing operations, Object Recognition by	
	Appearance, Reconstructing the 3DWorld, Object Recognition from	
	Structural Information, Using Vision	
5.	Robotics: Introduction, Robot Hardware, Robotic perception, Planning to	10
	Move, planning uncertain movements, Moving, Robotic software	
	architectures, application domains.	

Text Book:

Sl. No.	Author/s	Title	Publisher Details
1	Stuart J. Russell and Peter Norvig,	Artificial Intelligence: A Modern Approach	Third Edition, Pearson, 2017.

Reference Books:

Sl. No.	Author/s	Title	Publisher Details
1	Eugene Charnik,	Introduction to Artificial	Pearson
	Drew McDermott	Intelligence	EducationIndia, 1st edition, 2016.
2	George F Luger	Artificial Intelligence – Structures and Strategies for Complex	Addison Wesley, Fifth Edition, 2015
3	Dan W.Patterson	Problem Solving Introduction to Artificial Intelligence and Expert Systems	PHI 2014
4	Denis Rothman	Artificial Intelligence by Example	Ingram short title 2018

Web Resources:

Sl. No.	Web link
1	https://nptel.ac.in/courses/106/105/106105077/
2	https://onlinecourses.nptel.ac.in/noc21_cs42/

Course		Program Outcomes											PSO's				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO2	PSO3	PSO4	
CO-1	3	3	3	2	3	0	1	1	1	1	2	3	3	3	3	3	
CO-2	3	3	3	2	3	0	1	1	1	1	2	3	3	3	3	3	
CO-3	3	3	3	2	3	0	1	1	1	1	2	3	3	3	3	3	
CO-4	3	3	3	2	3	0	1	1	1	1	2	3	3	3	3	3	

Course Title: Distributed Computing Systems	Course Code: CS735
Credits (L: T: P): 4:0:0	<i>Contact Hours (L: T: P): 52:0:0</i>
Type of Course: Lecture	Category: Professional Elective
	Course
CIE Marks: 50	SEE Marks: 100

<u>Pre-requisite:</u> Computer Networks, Operating Systems.

CO-1	Describe the fundamental concept of distributed system and desired properties of such systems.
CO-2	Understanding Remote Communication and Interprocess Communication.
CO-3	Design algorithms to handle synchronization and deadlocks in various distributed applications.
CO-4	Develop an Advanced modelling techniques for building distributed computer systems.
CO-5	Design distributed File System and implementing cloud computing.

Unit No.	Course Content					
1.	Basic Distributed System Concepts: Introduction, What is a Distributed System?, Architectures for Distributed Systems, Distributed Computing Models, Comparison of the Distributed Computing Models, Advantages of Distributed Systems, Disadvantages of Distributed Systems, Software Concepts, Network Operating System, Distributed Operating System, Multiprocessor Time-Sharing System, Comparison of Different Operating Systems, Design issues in distributed systems: Transparency, Flexibility, Reliability, Performance, Scalability, Security, Fault Tolerance, Client-Server Model, Basic Concepts, Client-Server Addressing, Client-Server Implementation, Client-Server Architecture, Network Communication: LAN and WAN Technologies: Introduction to LAN and WAN, Classification of Networks, Protocols for Network Systems: The ISO/OSI Reference Model, Internet Protocol, Asynchronous Transfer Mode: Introduction to ATM, ATM Protocol Reference Model, Protocols for Distributed Systems: Fast Local Internet Protocol (FLIP), Versatile Message Transfer Protocol	11				

Educate Elevate Enlighten

JSS Mahavidyapeetha JSS Science And Technology University (Established Under JSS Science and Technology University Act No. 43 of 2013)

2.	Inter process Communication: Message Passing: Introduction to Message Passing, Advantages and Features of Message-Passing Systems, IPC Message Format, IPC Synchronization, Message Buffering Strategies, Multi-datagram Messaging, Process Addressing Techniques, Failure Handling Mechanism, Group Communication, Types of Group Communication: Group Management, Group Addressing and Message Delivery, Reliability Mechanism, Message Ordering, API for Internet Protocol: Synchronous and Asynchronous Communications, Sockets, UDP and TCP, Java API for UDP and TCP Protocols, Remote Communication: Introduction to Remote Communication, Middleware, Remote Procedural Call Basics, Basic RPC Operation, Stub Generation in RPC, RPC Implementation, RPC Messages, Parameter Passing Semantics, Server Management, RPC Communication, RPC Call Semantics, RPC Communication Protocols, Client-Server Binding, Other RPC Issues, Exception Handling and Security, RPC in Heterogeneous Environment, Failure Handling, RPC Optimization, Complicated and Special RPCs, Case Study: Sun RPC, Remote Method Invocation Basics, Distributed Object Concepts, RMI Implementation, Design Issues in RMI, RMI Execution, Types of Objects, Binding a Client to an Object, RMI Parameter Passing.	11
3	Synchronization: Introduction, Clock synchronization: Physical Clocks, Use of Synchronized Clocks, Logical clocks: Event Ordering, Implementation of logical clock, Lamport's Timestamps, Vector Timestamps, Global state, Mutual exclusion: Centralized Algorithm, Distributed Algorithm, Token Ring Algorithm, Comparison of Various Algorithms, Election algorithms: Bully algorithm, Ring algorithm, Election in wireless networks, Deadlocks in Distributed systems: Modelling, Handling Deadlock, Prevention, Detection, Recovery, Issues in Recovery from Deadlocks.	10
4.	Distributed System Management: Introduction, Resource Management: Desirable Features of a Global Scheduling Algorithm, Resource Management, Task Assignment Approach, Load Balancing Approach, Load Sharing Approach, Process Management and Migration, Threads, Fault Tolerance	10
5.	Distributed Shared Memory: DSM Concepts, Hardware DSM, Design Issues in DSM Systems, Implementing Issues in DSM Systems, Heterogeneous and other DSM systems, Distributed File System: Introduction DFS, File Models, DFS Design, Semantics File Sharing, DFS Implementation, File Caching in DFS, Replication in DFS, Sun Network File System, Google File System, Emerging Trends in Distributed Systems, Emerging Trends in Distributed Computing: Introduction, Grid Computing, Service Oriented Architecture, Cloud Computing, The Future of Emerging Trends.	10

Text Book:

Sl.	Author/s	Title	Publisher Details	
No.				
1	Sunita Mahajan	Distributed Computing	Oxford, second edition	

Reference Books:

Sl. No.	Author/s	Title	Publisher Details	
1	Andrew S Tanenbaum and Maarten van Steen	Distributed systems: principles and paradigms	2007PearsonEducation.Inc,	
			second edition.	
2	Coulouris, Dollimore,	Distributed systems:	Pearson, 5th Edition	
	Kindberg& Blair	concepts and design	January 2016	
3	Ajay D. Kshemkalyani , Mukesh Singhal	Distributed Computing Principles, Algorithms, and Systems	Cambridge, 2010	
4	Huiwei Wang, Huaqing Li	Distributed Optimization, Game and Learning Algorithms	Springer publication, 2021	

Web Resources:

Sl. No.	Web link
1	https://www.youtube.com/watch?v=ylbDPIUlNQQ
2	https://www.youtube.com/watch?v=RZy1JOBpFJI

Course		Program Outcomes									PSO's					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO2	PSO3	PSO4
CO-1	3	3	2	3	1	1	0	0	1	0	0	2	3	3	2	3
CO-2	2	2	3	3	3	0	0	0	1	0	1	2	3	3	2	3
CO-3	3	3	2	3	3	1	0	0	0	0	1	2	3	3	2	3
CO-4	2	3	3	3	3	1	0	0	0	0	1	2	3	3	2	3
CO-5	2	3	3	3	3	1	0	0	0	0	1	2	3	3	2	3

Course Title: Wireless Sensor Networks	Course Code: CS741
Credits (L: T: P): 4:0:0	Contact Hours (L: T: P): 52:0:0
Type of Course: Lecture	Category: Professional Elective Course
CIE Marks: 50	SEE Marks: 100

<u>Pre-requisite</u>: Data Communication and Computer Networks.

CO-1	Understand the fundamental concepts of WSN and its applications.
CO-2	Assess basic technologies and systems of WSN.
CO-3	Explore suitable MAC and routing algorithm and for wireless sensor actuator network.
CO-4	Implement the elements of distributed computing and network protocol for an application
CO-5	Suggest suitable hardware and software platforms for a application to setup sensor networks.

Unit No.	Course Content	Hours				
1.	Overview of Wireless Sensor Networks: The vision of Ambient	10				
	Intelligence, Application examples, Types of applications, Challenges for					
	WSNs, why are sensor networks different? Enabling technologies for					
	wireless sensor networks Challenges for Wireless Sensor Networks,					
	Enabling Technologies for Wireless Sensor Networks. Architectures:					
	Single-Node Architecture - Hardware Components, Energy Consumption					
	of Sensor Nodes, Operating Systems and Execution Environments, Some					
	examples of sensor nodes					
2.	Network Architecture: Sensor Network Scenarios, optimization Goals					
	and Figures of Merit, Design principles for WSNs, Service interfaces of					
	WSNs, Gateway Concepts. Physical Layer - Wireless channel and					
	communication fundamentals, Physical layer and transceiver design					
	considerations in WSNs					
3	MAC protocols - Fundamentals of (wireless) MAC protocols, Low duty	10				
	cycle protocols and wakeup concepts, Contention-based protocols,					
	Schedule-based protocols, The IEEE 802.15.4 MAC protocol, how about					
	IEEE 802.11 and Bluetooth? Link-layer protocols - tasks and requirements,					
	Error control, Framing, Link management.					

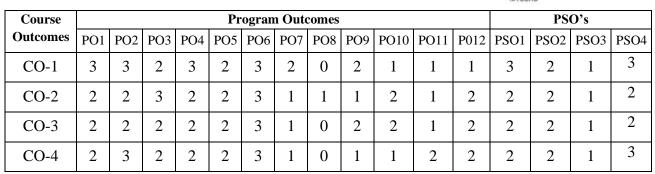
JSS Mahavidyapeetha JSS Science And Technology University (Established Under JSS Science and Technology University Act No. 43 of 2013)

4.	Routing protocols: The many faces of forwarding and routing, Gossiping	10					
	and agent-based unicast forwarding, Energy-efficient unicast, Broadcast						
	and multicast, Geographic routing, Mobile nodes, Data aggregation						
5.	Localization and positioning: Properties of localization and positioning	12					
	procedures, Possible approaches: Proximity , Trilateration and						
	triangulation, Scene analysis, Single-hop localization - Overlapping						
	connectivity, Approximate point in triangle, Positioning in multi-hop						
	environments, Impact of anchor placement, Topology control: Motivation						
	and basic ideas, Controlling topology in flat networks – Power control:						
	Some example constructions Processing, XML Processing in JavaScript,						
	XML Processing in PHP, JSON, Using JSON in JavaScript, Using JSON						
	in PHP and protocols - The relative neighborhood graph, Spanning tree-						
	based construction, Hierarchical networks : Some ideas from centralized						
	algorithms, Some distributed approximations.						

Text Book:

Sl. No.	Author/s	Title	Publisher Details
1	Holger Karl & Andreas Willig	Protocols and Architectures for Wireless Sensor Networks	1 st edition, John Wiley, 2011.

Reference Books:


Sl. No.	Author/s	Title	Publisher Details
1	Ian F. Akyildiz,	Wireless Sensor Networks	1 st Edition Wiley 2010
	Mehmet Can Vuran		
2	Feng Zhao & Leonidas	Wireless Sensor Networks- An	Elsevier, 2007
	J. Guibas	Information Processing	
		Approach	
3	Kazem sohraby, Daniel	Wireless Sensor Networks:	Second Edition
	minoli, Taieb znati	Technology, Protocols and	(Indian), WILEY, 2014
		Applications	
4	Anna Ha´c	Wireless Sensor Network	1 st edition John Wiley
		Designs	& Sons Ltd,2012

Web Resources:

Sl. No.	Web link
1	https://nptel.ac.in/courses/106/105/106105160
2	https://nptel.ac.in/noc/courses/noc18/SEM1/noc18-cs09

Educate Elevate Enlighten

JSS Mahavidyapeetha JSS Science And Technology University (Established Under JSS Science and Technology University Act No. 43 of 2013)

Course Title: Speech Processing	Course Code: CS742
Credits (L: T:P): 4:0:0	Contact Hours (L: T: P): 52:0:0
Type of Course: Lecture	Category: Professional Elective Course
CIE Marks: 50	SEE Marks: 100

<u>Pre-requisite:</u> Basic mathematics.

CO-1	Understand and classify the various sounds based on their characteristics.
CO-2	Represent the speech signals in Time domain by applying various techniques.
CO-3	Analyze the speech signals in frequency domain using various filtering
	techniques.
CO-4	Apply and evaluate the various models to analyze and process the homomorphic
	speech signals.
CO-5	Apply the concepts on simple speech processing applications using simple
	models.

Unit No.	Course Content	No. of Hours
1	Fundamentals of Human Speech Production and sounds classification: The Process of Speech Production, Short-Time Fourier Representation of Speech, The Acoustic Theory of Speech Production, Lossless Tube Models of the Vocal Tract, Digital Models for Sampled Speech Signals	10
2	Time-Domain Methods for Speech Processing: Introduction to Short- Time Analysis of Speech, Short-Time Energy and Short-Time Magnitude, Short-Time Zero-Crossing Rate, The Short-Time Autocorrelation Function, The Modified Short-Time Autocorrelation Function, The Short-Time Average Magnitude Difference Function.	10
3	Frequency Domain Representations: Discrete-Time Fourier Analysis, Short-Time Fourier Analysis, Spectrographic Displays, Overlap Addition (OLA), Method of Synthesis, Filter Bank Summation (FBS) Method of Synthesis, Time-Decimated Filter Banks, Two-Channel Filter Banks, Implementation of the FBS Method Using the FFT, OLA Revisited, Modifications of the STFT.	10
4	The Cepstrum and Homomorphic Speech Processing: Homomorphic Systems for Convolution, Homomorphic Analysis of the Speech Model, Computing the Short-Time Cepstrum and Complex Cepstrum of Speech, Homomorphic Filtering of Natural Speech, Cepstrum Distance Measures, Linear Predictive and Mel frequency Analysis of Speech Signals: Basic Principles of Linear Predictive and MFCC Analysis methods.	12
5	Applications of Speech Processing: Brief applications of speech processing in voice response systems, speech and speaker recognition system.	10

Text Books:

Sl. No.	Author/s	Title	Publisher Details
1	Lawrence Rabiner and Biing-Hwang Juang	Fundamentals of Speech Recognition	Pearson Education, 2009.
2	Daniel Jurafsky and James H Martin	Speech and Language Processing – An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition Pearson Education	Pearson Education

Reference Books:

Sl.	Author/s	Title	Publisher Details
No. 1	Steven W. Smith	The Scientist and Engineer's Guide to Digital Signal Processing	California Technical Publishing.2006
2	Thomas F Quatieri	Discrete-Time Speech Signal Processing – Principles and Practice	Pearson - Education,2005
3	Ben gold and Nelson Morgan	Speech and audio signal processing, processing and perception of speech and music	Wiley- India Edition, 2006 Edition.
4	JacobBenstty, yiteng Huang et.al	Hand book of speech processing	Springer,2007

Web Resources:

Sl. No.	Web link
1	https://nptel.ac.in/courses/PLvv3PyiCcNrFuT7CEIvIr4a4g4orascx3.
2	https://nptel.ac.in/courses/jqsWOJze3ac.

Course	Program Outcomes							PSO's								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO2	PSO3	PSO4
CO-1	1	2	2	1	2	1	3	1	2	1	2	1	1	2	1	3
CO-2	1	1	2	1	3	1	2	1	2	3	2	3	2	1	2	1
CO-3	1	2	1	2	1	2	1	2	3	2	3	2	1	2	1	3
CO-4	2	1	3	1	2	3	1	3	2	1	2	1	3	2	1	2
CO-5	1	1	1	2	1	2	1	2	3	2	1	2	1	3	2	1

Course Title: Robotics	Course Code:CS743
Credits (L: T:P): 4:0:0	Lecture Hours (L: T: P): 52:0:0
Type of Course: Lecture	Category: Professional Elective Course
CIE Marks: 50	SEE Marks: 100

Prerequisite: NIL

CO-1	Understand the basic principle of Robots.
CO-2	Comprehend the working principles of wheeled mobile robots.
CO-3	Understand how robot perceives its environment with the help of various sensors.
CO-4	Understand the principles of actuators
CO-5	Programming robots for specific applications.

Unit No.	Course Content	No. of Hours
1	Introduction - What is a robot? Classification of Robots, what is Robotics?	10
	History of Robotics, Advantages and Disadvantages, Robots, Robot	
	Components, Robot Degrees of Freedom, Robot Joints, Robot Coordinates,	
	Robot Reference Frames, Programming Modes, Robot Characteristics,	
	Robot Workspace, Robot Languages, Robot Applications.	
2.	Kinematics of Wheeled mobile robots - Differential Drive Kinematics,	10
	Forward Kinematics for Differential Drive Robots, Mapping Angular	
	Wheel Velocity to Linear Velocity. Driving algorithms - Random drive,	
	driving to a target, turn and drive straight, circle, dog curve and splines.	
3.	Distance - Measure Distance with Ultrasonic Sound, Ultrasonic Sensor,	10
	Detect Obstacles with Infrared (IR Distance Sensor), How to See Infrared,	
	Test Project: Posture Alarm. Smoke and Gas - Detect Smoke (Analog Gas	
	Sensor), Burglar Alarm (Passive Infrared Sensor), Pressure and vibration	
	sensing, Accelerometer and Gyro and Tilt sensing.	
4.	Introduction to Electric Motors - Preliminary Concepts, DC Motors,	10
	Stepper Motors, Servomotors, AC Motors, Gears and Gearmotors, Linear	
	Motors, DC and Servo Motor	
5	Line following, Cliff detection and avoidance, Obstacle avoidance, Wall	12
	following algorithms, maze, recursive maze exploration and shortest path	
	and case studies.	

Text Books:

Sl. No.	Author/s	Title	Publisher Details
1	Saeed Benjamin Niku	Introduction in Robotics Analysis, Control and Application	Wiley, 2nd Edition
2	Tero Karvinen, Kimmo Karvinen, Ville Valtokari	Make: Sensors	
3	Que Publishing	Motors for Makers: A Guide to Steppers, Servos, and Other Electrical Machines	Matthew Scarpino

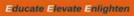
Reference Books:

Sl. No.	Author/s	Title	Publisher Details
1	Nikolaus Correll	Introduction to Autonomous Robots	1st edition, 2016
2	Thomas Bräunl	Robot Adventures in Python and C	Springer, 2020.
3	Gregor Klancar, Andrej Zdesar, Saso Blazic, Igor Skrjanc	Wheeled mobile robotics from fundamentals towards autonomous systems	Elesevier 2017
4	Gregory Dudek and Michael Jenkin	Computational Principles of Mobile Robotics	Cambridge University Press, 2010

Web Resources:

Sl. No.	Web link
1	https://nptel.ac.in/courses/112/105/112105249/
2	https://nptel.ac.in/courses/107/106/107106090/

Course	Program Outcomes											PSO's				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO2	PSO3	PSO4
CO-1	3	3	3	2	3	2	1	1	0	0	2	3	3	3	3	3
CO-2	3	3	3	2	3	2	1	1	0	0	2	3	3	3	3	3
CO-3	3	3	3	2	3	2	1	1	0	0	2	3	3	3	3	3
CO-4	3	3	3	2	3	2	1	1	0	0	2	3	3	3	3	3
CO-5	3	3	3	2	3	2	1	1	0	0	2	3	3	3	3	3

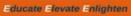


Course Title: High Performance Computing	Course Code: CS744
Credits (L: T: P): 4:0:0	Contact Hours (L: T: P): 52:0:0
Type of Course: Lecture	Category: Professional Elective
	Course
CIE Marks: 50	SEE Marks: 100

<u>Pre-requisite:</u> Computer Organization and Architecture.

CO-1	Design, analyze and implement high performance computational science and
	engineering applications.
CO-2	Illustrate mapping of applications to high-performance computing systems.
CO-3	Apply hardware/software co-design for achieving performance on real-world
	applications.

Unit No.	Course Content	No. of Hours
1	Introduction to Parallel Computing: Motivating Parallelism, Scope of	10
	Parallel Computing. Parallel Programming Platforms: Implicit	
	Parallelism: Trends in Microprocessor Architectures, Limitations of	
	Memory System Performance, Dichotomy of Parallel Computing	
	Platforms, Physical Organization of Parallel Platforms, Communication	
	Costs in Parallel Machines, Routing Mechanisms for Interconnection	
	Networks, Impact of Process-Processor Mapping and Mapping	
	Techniques	
2	Principles of Parallel Algorithm Design: Preliminaries, Decomposition	12
	Techniques, Characteristics of Tasks and Interactions, Mapping	
	Techniques for Load Balancing, Methods for Containing Interaction	
	Overheads, Parallel Algorithm Models. Basic Communication	
	Operations: One-to-All Broadcast and All-to-One Reduction, All-to-All	
	Broadcast and Reduction, All-Reduce and Prefix-Sum Operations,	
	Scatter and Gather, All-to-All Personalized Communication, Circular	
	Shift, Improving the Speed of Some Communication Operations	


-										
3	Analytical Modeling of Parallel Programs: Sources of Overhead in Parallel Programs, Performance Metrics for Parallel Systems, The Effect	10								
	of Granularity on Performance, Scalability of Parallel Systems. Minimum									
	Execution Time and Minimum Cost-Optimal Execution Time,									
	Asymptotic Analysis of Parallel Programs. Programming Using the									
	Message-Passing Paradigm: Principles of Message-Passing									
	Programming, The Building Blocks: Send and Receive Operations, MPI:									
	the Message Passing Interface, Topologies and Embedding, Overlapping									
	Communication with Computation, Collective Communication and									
	Computation Operations, Groups and Communicators									
4	Programming Shared Address Space Platforms: Thread Basics, Why	10								
	Threads? The POSIX Thread API, Thread Basics: Creation and									
	Termination, Synchronization Primitives in Pthreads, Controlling Thread									
	and Synchronization Attributes, Thread Cancellation, Composite									
	Synchronization Constructs, Tips for Designing Asynchronous Programs,									
	OpenMP: a Standard for Directive Based Parallel Programming. Dense									
	Matrix Algorithms: Matrix-Vector Multiplication, Matrix-Matrix									
	Multiplication, Solving a System of Linear Equations. Sorting: Issues in									
	Sorting on Parallel Computers, Sorting Networks, Bubble Sort and its									
	Variants, Quicksort, Bucket and Sample Sort.									
5	Graph Algorithms: Definitions and Representation, Minimum Spanning	10								
	Tree: Prim's Algorithm, Single-Source Shortest Paths: Dijkstra's									
	Algorithm, All-Pairs Shortest Paths, Transitive Closure, Connected									
	Components, Algorithms for Sparse Graphs. Search Algorithms for									
	Discrete Optimization Problems: Definitions and Examples, Sequential									
	Search Algorithms, Search Overhead Factor, Parallel Depth-First Search,									
	Parallel Best-First Search, Speedup, Anomalies in Parallel Search									
	Algorithms.									
L										

Text Book:

Sl. No.	Author/s	Title	Publisher Details		
1	Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar	Introduction to Parallel Computing	2 nd Edition, Addison-Welsey, 2003		

Reference Books:

Sl. No.	Author/s	Title	Publisher Details			
1	G.E. Karniadakis, R.M. Kirby	Parallel Scientific Computing in C++ and MPI: A Seamless Approach to Parallel Algorithms	Cambridge University Press, 2003			
		and their Implementation				

JSS Mahavidyapeetha JSS Science And Technology University (Established Under JSS Science and Technology University Act No. 43 of 2013)

2	M.J. Quinn	Parallel Programming in C with	McGraw-Hill, 2004
		MPI and OpenMP	
3	Shameem Akhter and	Multicore Programming, Increased	Intel Press, 2006
	Jason Roberts	Performance through Software	
		Multi-threading	
4	David E. Culler	Parallel Computer Architecture: A	Elsevier, 2006
		Hardware/Software Approach	

Web Resources:

Sl. No.	Web link
1	https://developer.nvidia.com/udacity-cs344-intro-parallel-programming
2	https://nptel.ac.in/courses/106/108/106108055/#

Course		Program Outcomes													PSO's			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO2	PSO3	PSO4		
CO-1	3	3	2	2	2	1	0	0	2	0	0	2	3	3	1	1		
CO-2	3	3	2	2	2	1	0	0	2	1	0	2	3	3	1	1		
CO-3	3	3	2	2	2	1	1	0	2	1	0	2	3	3	1	1		

Course Title: Pattern Recognition	Course Code: CS745
Credits (L: T: P): 4:0:0	Contact Hours (L: T: P): 52:0:0
Type of Course: Lecture	Category: Professional Elective Course
CIE Marks: 50	SEE Marks: 100

Pre-requisite: Data Structures, Analysis and Design of Algorithms

<u>Course Outcomes:</u> After completing this course, students should be able to:

CO-1	Estimating Parameters from Samples.
CO-2	Classify Patterns using Parametric and Non-Parametric Techniques.
CO-3	Clustering of Samples using different Clustering Algorithms.
CO-4	Apply various Dimensionality Reduction Techniques to reduce the Dimension.

Unit No.	Course Content										
1.	Introduction: Applications of Pattern Recognition, Statistical Decision										
	Theory and Analysis. Probability: Introduction to probability, Probabilities										
	of Events, Random Variables, Joint Distributions and Densities, Moments										
	of Random Variables, Estimation of Parameters from samples										
2.	Statistical Decision Making: Introduction, Bayes' Theorem,	10									
	Conditionally Independent Features, Decision Boundaries.										
3	Nonparametric Decision Making: Introduction, Histograms, kernel and										
	Window Estimators, Nearest Neighbor Classification Techniques: K-										
	Nearest neighbor algorithm, Adaptive Decision Boundaries, Minimum										
	Squared Error Discriminant Functions, Choosing a decision-making										
	technique.										
4.	Clustering: Introduction, Hierarchical Clustering, Agglomerative	10									
	clustering algorithm, The single linkage algorithm, The complete linkage										
	algorithm, Partitional Clustering: Forgy's algorithm, The K-Means										
	algorithm.										
5.	Dimensionality Reduction: Singular Value Decomposition, Principal	10									
	Component Analysis, Linear Discriminated Analysis.										

Text Books:

Sl. No.	Author/s	Title	Publisher Details			
1	Earl Gose, Richard Johnsonbaugh, Steve Jost,	Pattern recognition and Image analysis	Pearson			

Reference Books:

Sl. No.	Author/s	Title	Publisher Details		
1	Richard O.Duda, Peter E.Hart, David G. Stork	Pattern Classification	John Wiley publication, 2nd edition, 2001.		
2	A.K.Jain, R.Bolle, S.Pankanti	Biometric: Personal Identification in network society	Kluwer academic publishers, 1999.		
3	Robert Schalkoff	Pattern Recognition: Statistical, Structural and Neural Approaches	John Wiley & Sons, Inc.1992.		
4	Christopher M. Bishop	Pattern Recognition and Machine Learning	Springer publication, 2006		

Web Resources:

Sl. No.	Web link
1	https://nptel.ac.in/courses/106/108/106108057/
2	https://nptel.ac.in/courses/106/106/106106046/

Course	Program Outcomes													PSO's			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO2	PSO3	PSO4	
CO-1	3	3	2	3	1	0	0	0	1	0	0	2	3	3	2	3	
CO-2	3	3	3	3	3	0	0	0	1	0	1	2	3	3	2	3	
CO-3	3	3	3	3	3	1	0	0	0	0	1	2	3	3	2	3	
CO-4	3	3	3	3	3	1	0	0	0	0	1	2	3	3	2	3	