
Unit

No.
Course Content

No. of

Hours

1. Problem Solving Concepts:

Introduction to Algorithms and Flowcharts, Exchanging the values of Two

Variables, Counting, Summation of a Set of Numbers, Factorial Computation,

Sine Function Computation, Generation of the Fibonacci Sequence.

Overview of C:

Basic structure of a C program, executing a C Program, Character Set, C Tokens,

Keywords and Identifiers, Constants, Variables, data types, Declaration of

variables, Assigning values to variables, Defining Symbolic Constants,

Formatted Input and Formatted Output.

08

2. Operators:

Introduction, Arithmetic Operators, Relational Operators, Logical Operators,

Assignment Operators, Increment and Decrement Operators, Conditional

Operator, Bitwise Operators, Conditional Operator, Special Operators: Comma

and ‘sizeof’ operator.

Expressions:

Arithmetic Expressions, Evaluation of Expressions, Precedence of Arithmetic

Operators, Type Conversions in Expressions, Operator Precedence and

Associativity.

06

3.

Control statements:

Introduction, Decision Making with IF Statement, Simple IF Statement, the

IF...ELSE Statement, Nesting of IF Statements, The ELSE…IF Ladder, The

Switch statement, Use of ‘goto’ statement.

Loops:

The WHILE Statement, The DO – While Statement, the FOR Statement, Nesting

of Loops, Jumps in Loops: break & continue statement. exit statement.

08

Programming for Problem Solving (2020CS110)

Credits: 3: 0: 0

Hours: 39 Hours (13 Weeks * 3 Hours= 39 Hours)

Tutor:

Dr. Srinath.S, Associate Professor, Dept. of Computer Science and Engineering,

Sri Jayachamrajendra College of Engineering, JSS S&TU, Mysuru- 6

Email: srinath@sjce.ac.in

CIE – Continuous Internal Evaluation – 50 Marks

(5 Events, Weightage 10 Marks each, so 5*10 = 50 Marks)

Event 1 – Test 1 (Scheduled at the College Level)

 (Eligibility to take up Test 1: First block attendance should be >=60%)

mailto:srinath@sjce.ac.in

 (First block is from day 1 till one day before the commencement of first test)

Event 2 – Quiz 1 (Will be scheduled by the tutor)

Event 3 – Test 2 (Scheduled at the College Level)

(Eligibility to take up Test 2: Second block attendance should be >=60%)

(Second block is from day 1 after first test till one day before the commencement of

second test)

Event 4 – Quiz 2 (Will be scheduled by the tutor)

Event 5 – Test 3 (Scheduled at the College Level)

Eligibility to take up SEE:

 Should have scored minimum of 50% marks in the CIE, i.e 25 Marks

 Should maintain 85% attendance

SEE – Semester End Examination - 50 Marks

Examination for 100 Marks, will be reduced to 50Marks

(Minimum score to pass is 40 out of 100)

Total Marks: 100 (50 CIE + 50 SEE)

>=90 and above – S grade

>=75 and <90 - A grade

SEE QPP

Two parts

All the question is for 10 Marks : (10 * 10 =100 Marks)

Part A (all are compulsory)

Compulsory

1 (Unit 1)

2 (Unit 2)

3 (Unit 3)

4 (Unit 4)

5 (Unit 5)

Part B (will have internal choice)

6 or 7 (Unit 1) : answer any one.

8 or 9 (Unit 2) : answer any one

10 or11 (Unit 3) : answer any one

12 or 13 (Unit 4) : answer any one

14 or 15 (unit 5) : answer any one.

Programming for Problem Solving (2020CS110): 3 Credits Marks: 100

Tutor:

Dr. Srinath.S, Associate Professor, Dept. of Computer Science and Engineering,

Sri Jayachamrajendra College of Engineering, JSS S&TU, Mysuru- 6

UNIT – 1 (Syllabus)

Introduction to Problem Solving:

Introduction to computer concepts: Block diagram of a computer, Define: Hardwar, Software,

Operating System, Text Editor.

Computer Language classification: MLL, ALL, HLL, Assembler, Compiler, Interpreter

Introduction to algorithm, different symbols used in flowchart and converting an algorithm to

flowchart.

Overview of C:

History of C, Importance of C, Basic structure of a C program, executing a C Program,

Character Set, C Tokens, Keywords and Identifiers, Constants, Variables, data types,

Declaration of variables, assigning values to variables, Defining Symbolic Constants,

Formatted Input and Formatted Output

Introduction to Problem Solving:

Introduction to Computer Concepts:

Define Computer:

Computer is a calculating machine, which accepts data through input device, processes it

using processing device and give the result through output device. Computer is an electro-

mechanical machine. It consists of electronic parts (IC’S) electrical (motors, fan) and

Mechanical parts (Outer cover, keyboard).

Characteristics of Computer:

The following are the characteristics of a computer:

1. Speed: Computer can process the data at an extremely high speed.

2. Accuracy: Computer will produce accurate result.

3. Reliability: It is the measurement of performance of computer.

4. Versatile: Computer can be used for different purpose.

5. Storage capacity: computer can store large amount of data.

Block Diagram of a Computer:

Computer has five fundamental units:

1. Input unit: Through which data will be fed into the computer

Example: Keyboard, Mouse, Microphone, Joystick, Web camera

Keyboard is the standard input unit.

2. Storage unit: It is used to store the data/ Information.

Two types:

(i) Primary Storage Unit / Primary Memory

Example: Random Access Memory (RAM)

(ii) Secondary Storage Unit/ Secondary Memory

Example: Hard Disk Drive (HDD)/ Solid State Device (SSD)

3. Control Unit: Controls all other units.

4. Arithmetic and Logical Unit: Does the computation.

Note: Control Unit and Arithmetic and Logical unit put together called as

Central Processing Unit or CPU. A single chip CPU is called Microprocessor.

5. Output Unit: Through which result will be displayed to the external world

Example: Monitor, Speaker, Projector, Printer

Monitor is the standard output unit.

Output generated using printer is called Hardcopy output.

Hardware: All the physical parts of the computer is called hardware. You can touch

and feel. Example: Keyboard, Mouse, outer cover, IC’s

Software:Programs written for the computer is called software. Ex: MS-Word, C

program, Windows 10 OS

Operating System:It is the interface between user of the computer and computer

hardware.

Text Editor: It is an application program which allows user to type text and edit it.

Computer Languages:

Machine Level Language (MLL) : Binary language it use 1 and 0. It is the only

language understood by the computer.

Assembly Level Language (ALL) : It uses short notations like add, sub, mul and div

etc.

It cannot be understood by the computer. Hence ALL needs to be converted into MLL

Assembler: is the program, which converts ALL to MLL and vice versa.

Example for ALL: ALL 8085, ALL 8086

High Level Language (HLL) : It is English like language. It is easy to understand by

the programmer.

It cannot be understood by the computer.

HLL needs to be converted into MLL.

Compiler or Interpreter will be used to convert HLL to MLL and vice versa.

Compiler: converts HLL to MLL in one step.

Interpreter: Converts HLL to MLL line by line.

 Example: C,C++, Java

Algorithm:It is the step-by-step procedure to solve a given problem. It will accept

input, processes and gives output. It is simple to represent and it is independent of

programming language.

Example:

I. Write an algorithm to exchange the contents of two variable.

1. [Start]

2. [Input two numbers]

Read(x,y)

3. [Process two swap two numbers]

t <- x

x <- y

y <- t

4. [Output – to print the swapped numbers]

Write (x,y)

5. [Stop]

II. Write an algorithm to find the area of a triangle given base and height.

1. [Start]

2. [Input – Base and height of the triangle]

Read(b,h)

3. [Process – to compute the area of the triangle]

a <- 0.5*b*h

4. [Output the area]

Write (a)

5. [Stop]

III. Write an algorithm to find the area of a triangle given its 3 sides.

1. [Start]

2. [Input – 3 sides of the triangle]

Read(a,b,c)

3. [Process – to compute half perimeter]

s<- (a+b+c)/2.0

4. [Process to compute the area]

a <- sqrt(s * (s-a) * (s-b) * (s-c))

5. [Output the area]

Write (a)

6. [Stop]

IV. Write an algorithm to compute the area of a circle

1. [Start]

2. [Input – radius of the circle]

Read(r)

3. [Initialize]

p <- 3.14

4. [Process – to compute the area of the circle]

a <- (p * r *r)

5. [Output the area]

Write (a)

6. [Stop]

V. Write an algorithm to check whether the given number is odd or even

1. [Start]

2. [Input a number]

Read(n)

3. [Compute the reminder]

r <- n modulo 2

4. [process to check whether the given number is odd or even using

reminder value]

If (r = 0)

Write (“Given number is Even”)

Else

 Write (“Given number is Odd”)

5. [Stop]

VI. Write an algorithm to compute the sum of first ‘n’ natural numbers

1. [Start]

2. [Input a number]

Read(n)

3. [Initialize]

sum < - 0

4. [compute the sum of first ‘n’ numbers]

for i <- 1 to n step 1

 sum <- sum + i

end for

5. [Display the sum]

Write(sum)

6. [Stop]

VII. Write an algorithm to compute the factorial of the given number

1. [Start]

2. [Input a number]

Read(n)

3. [Initialize]

fact < - 1

4. [compute the factorial of ‘n’]

for i <- 1 to n step 1

 fact <- fact* i

end for

5. [Display the sum]

Write(fact)

6. [Stop]

Flow chart: It is the pictorial representation of an algorithm. All the steps are

drawn in the form of different shapes. Commonly used symbols for flow chart

are :

I. Write a flowchart to exchange contents of two variables:

Start

Read (x, y)

t <- x
x <- y
y <- t

Write(x, y)

2. Write a flowchart to compute the area of a triangle

3. Write a flow chart to compute the area of a triangle given 3 sides.

compute the area of a triangle

4. Write a flowchart to find the area of a circle

stop

Start

Read (b, h)

a <- (0.5 *b *h)

write (a)

Stop

Start

Read (a,b,c)

s <- (a+b+c)/2.0

write (a)

Stop

a <- sqrt(s * (s-a) * (s-b) * (s-c))

Read (r)

a <- (p*r*r)

write (a)

Stop

Start

p <-3.14

5.Write a flowchart to check whether the given number is odd or even

Read (n)

If (n mod 2) = 0

Write (“Odd”) write (“Even”)

T F

Stop

6.Write the flow chart to compute the sum of first ‘n’ natural numbers

Start

Read (n)

Sum <- 0

For i <- 1 to n step 1

Sum <- Sum +i

T

Stop

write (sum)

F

7.Write a flowchart to compute the factorial of a given number

Read (n)

fact <- 1

For i <- 1 to n step 1

fact <- fact * i

T

Stop

write (fact)

F

Start

Overview of C:

Syllabus:

Basic structure of a C program, executing a C Program, Character Set, C Tokens, Keywords

and Identifiers, Constants, Variables, data types, Declaration of variables, Assigning values to

variables, Defining Symbolic Constants, Formatted Input and Formatted Output.

Basic Structure of a C Program:

C program can be viewed as a collection of functions. A C program may contain one or more

sections as shown in the figure.

The document section consists of set of comment lines giving the name of the program. It

can contain information about the program, author, date of writing the program etc. It is very

popularly known as comment statement. It is enclosed between /* … and …..*/

The link section provides instructions to the compiler to link functions from the system

library.

In this section, line begins with # symbol.

Some variables which are used in one or more functions are placed in the global declaration

section.

Every C program must have one main() function. This section contains two parts, declaration

section and executable part. The declaration part declares all the variables used in the

executable part. This is followed by executable part. These two parts are placed between

opening and the closing braces. The program execution begins at the opening braces and ends

at the closing braces. All the statements in the declaration and executable section ends with

semicolon (;).

The subprogram section contains all the user defined functions that are called in the main

function. Used defined functions are usually placed immediately after the main function.

=

Executing a C Program:

Executing a C program involves a series of steps. These are:

1. Creating the program

2. Compiling the program

3. Linking the program with functions that are needed from the C library

4. Executing the program.

Character Set:

The characters in C are grouped into the following:

1. Letters : A…Z and a…z

2. Digits : 0-9

3. Special characters : Example: #,&,;…

4. White spaces.

C Tokens:

C has six types of tokens as shown in figure below:

Keywords

Keyword is also called as reserved words.

All keywords have fixed meaning.

Keywords cannot be used as Identifier.

ANSI ‘C’ has 32 keywords

Example: if, else, int, float

Identifier:

Identifier refer to the names of variables, functions and arrays.

These are user defined names and consists of sequence to letters and digits.

The only special character allowed is underscore (_).

First character of the identifier cannot be digit.

Length of the identifier can be upto 31 characters.

It cannot contain white space (blank space)

Keywords cannot be used as identifier.

Both upper case and lowercase letters are allowed.

Example for valid identifier:

X, x, x_y, s1, add_sum, s100, intx

Example for Invalid identifier:

1x : invalid because it starts with number

int : invalid because ‘int’ is a reserved word

x@: invalid because the special character @ not allowed.

Constants:

 Constants in C refer to fixed values that do not change during the execution of a program.

C supports different types of constant:

 Integer constant: Refers to a sequence of digits. Example: +78, -321

Real Constant: Numbers containing fractional part. Ex: 4.5,-0.76

A real constant may also be expressed in exponential notation. It will use ‘E’ or ‘e’ . It

indicates that the number of ‘e’ will be raised to power 10.

Example: 3.18e3, -1.2E-1

Single Character constant:

It contains a single character enclosed in a pair of single quote marks. Example: ‘a’,’#’,’5’

String Constant: is a sequence of characters enclosed in double quotes.

Example: “JSS”, SJCE1”, “#74”

Backslash characters:

Variables: A Variable is a data name that may be used to store a data value.

A variable can take different values at different times during execution.

(Rules to create a variable name: refer rules for identifier)

Data types:

ANSI C supports 3 classes of data types:

1. Primary data type: int, float, char, double and void

2. Derived data type: Arrays, Pointers

3. User Defined data type: typedef

Ex: typedef int xyz;

 xyz a,b,c;

Primary data type

1. Int – 2 bytes Range -32768 to +32768

2. Float - 4 bytes Range- 3.4e-38 to 3.4e+38

3. Char 1 byte Range- -128 to +127

4. Double 8 bytes Range – 1.7e-308 to 1.7e+308

5. Void 0 byte

Assigning values to variables:

Value can be assigned to variable at the time of declaration.

Example: int x=10;

Define Symbolic Constant:

 Certain unique constants can appear at multiple locations in a program. Then it can be

defined as symbolic constant.

Example:

#define PI 3.14

Format Specifiers:

Formatted Input Statement:

Formatted Input statement:

Use format specifier and accept the data.

Example:

scanf(“%d”,&a);

 scanf(“%d%d”,&a,&b);

 scanf(“%d%f”,&x,&y);

Formatted output statement:

Use format specifier to display the result through standard output device monitor.

Example:

 pritnf(“%d”,x)

 pritnf(“Sum = %d\n”,s);

 printf(“ Square of %d = %d\n”,n,s);

--------------------------End of unit 1 ---

